diff --git a/tensorflow_probability/python/internal/distribution_util.py b/tensorflow_probability/python/internal/distribution_util.py index 7c80e41103..94281e8830 100644 --- a/tensorflow_probability/python/internal/distribution_util.py +++ b/tensorflow_probability/python/internal/distribution_util.py @@ -1238,7 +1238,7 @@ def pad(x, axis, front=False, back=False, value=0, count=1, name=None): tensorshape_util.rank(x.shape) if tensorshape_util.rank(x.shape) is not None else tf.rank( x, name='ndims')) - axis = tf.convert_to_tensor(axis, name='axis') + axis = ps.convert_to_shape_tensor(axis, name='axis') axis_ = tf.get_static_value(axis) if axis_ is not None: axis = axis_ diff --git a/tensorflow_probability/python/mcmc/diagnostic.py b/tensorflow_probability/python/mcmc/diagnostic.py index b7d3a9f3f3..b9d0d7e9fc 100644 --- a/tensorflow_probability/python/mcmc/diagnostic.py +++ b/tensorflow_probability/python/mcmc/diagnostic.py @@ -461,7 +461,7 @@ def potential_scale_reduction(chains_states, # array) is not efficiently computable. Therefore, we try constant_value then # check for None. icn_const_ = tf.get_static_value( - tf.convert_to_tensor(independent_chain_ndims)) + ps.convert_to_shape_tensor(independent_chain_ndims)) if icn_const_ is not None: independent_chain_ndims = icn_const_ if icn_const_ < 1: @@ -539,15 +539,15 @@ def _potential_scale_reduction_single_state(state, independent_chain_ndims, state = tf.transpose( a=state, perm=ps.concat( - [[1, 0], tf.range(2, tf.rank(state))], axis=0)) + [[1, 0], ps.range(2, ps.rank(state))], axis=0)) # We're treating the new dim as indexing 2 chains, so increment. independent_chain_ndims += 1 - sample_axis = tf.range(0, sample_ndims) - chain_axis = tf.range(sample_ndims, + sample_axis = ps.range(0, sample_ndims) + chain_axis = ps.range(sample_ndims, sample_ndims + independent_chain_ndims) - sample_and_chain_axis = tf.range( + sample_and_chain_axis = ps.range( 0, sample_ndims + independent_chain_ndims) n = _axis_size(state, sample_axis) diff --git a/tensorflow_probability/python/stats/sample_stats.py b/tensorflow_probability/python/stats/sample_stats.py index ebfea948ed..d328452345 100644 --- a/tensorflow_probability/python/stats/sample_stats.py +++ b/tensorflow_probability/python/stats/sample_stats.py @@ -183,7 +183,7 @@ def auto_correlation(x, if max_lags is None: max_lags = x_len - 1 else: - max_lags = tf.convert_to_tensor(max_lags, name='max_lags') + max_lags = ps.convert_to_shape_tensor(max_lags, name='max_lags') max_lags_ = tf.get_static_value(max_lags) if max_lags_ is None or not know_static_shape: know_static_shape = False @@ -285,7 +285,7 @@ def cholesky_covariance(x, sample_axis=0, keepdims=False, name=None): lower triangular matrices (the Cholesky factors). """ with tf.name_scope(name or 'cholesky_covariance'): - sample_axis = tf.convert_to_tensor(sample_axis, dtype=tf.int32) + sample_axis = ps.convert_to_shape_tensor(sample_axis, dtype=tf.int32) cov = covariance( x, sample_axis=sample_axis, event_axis=-1, keepdims=keepdims) return tf.linalg.cholesky(cov) @@ -971,10 +971,10 @@ def log_average_probs(logits, sample_axis=0, event_axis=None, keepdims=False, with tf.name_scope(name or 'average_sigmoid'): logits = tf.convert_to_tensor(logits, dtype_hint=tf.float32, name='logits') if sample_axis is not None: - sample_axis = tf.convert_to_tensor( + sample_axis = ps.convert_to_shape_tensor( sample_axis, dtype_hint=tf.int32, name='sample_axis') if event_axis is not None: - event_axis = tf.convert_to_tensor( + event_axis = ps.convert_to_shape_tensor( event_axis, dtype_hint=tf.int32, name='event_axis') if event_axis is None: # log(sigmoid(x)) = log(1 / (1 + exp(-x))) = -log1p(exp(-x)) = -sp(-x)