You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
hello fellow developers, it appears that the tf.keras and tfp.tfp.layers. are not compatible
i have this code="
**num_inducing_points = 40
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype),
tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False),
tfp.layers.VariationalGaussianProcess(
num_inducing_points=num_inducing_points,
kernel_provider=RBFKernelFn(dtype=x.dtype),
event_shape=[1],
inducing_index_points_initializer=tf.constant_initializer(
np.linspace(*x_range, num=num_inducing_points,
dtype=x.dtype)[..., np.newaxis]),
unconstrained_observation_noise_variance_initializer=(
tf.constant_initializer(
np.log(np.expm1(1.)).astype(x.dtype))),
),
])
//Do inference.
batch_size = 32
loss = lambda y, rv_y: rv_y.variational_loss(
y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0])
model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss)
model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False)
//Make predictions.
yhats = [model(x_tst) for _ in range(100)]**
"
and i get the following
error output=
"**:7: UserWarning: layer.add_variable is deprecated and will be removed in a future version. Please use the layer.add_weight() method instead.
self._amplitude = self.add_variable(
:12: UserWarning: layer.add_variable is deprecated and will be removed in a future version. Please use the layer.add_weight() method instead.
self._length_scale = self.add_variable(
/usr/local/lib/python3.10/dist-packages/keras/src/models/sequential.py in add(self, layer, rebuild)
93 layer = origin_layer
94 if not isinstance(layer, Layer):
---> 95 raise ValueError(
96 "Only instances of keras.Layer can be "
97 f"added to a Sequential model. Received: {layer} "
ValueError: Only instances of keras.Layer can be added to a Sequential model. Received: <tensorflow_probability.python.layers.distribution_layer.VariationalGaussianProcess object at 0x7acd5e77fc70> (of type <class 'tensorflow_probability.python.layers.distribution_layer.VariationalGaussianProcess'>)**"
The text was updated successfully, but these errors were encountered:
hello fellow developers, it appears that the tf.keras and tfp.tfp.layers. are not compatible
i have this code="
**num_inducing_points = 40
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype),
tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False),
tfp.layers.VariationalGaussianProcess(
num_inducing_points=num_inducing_points,
kernel_provider=RBFKernelFn(dtype=x.dtype),
event_shape=[1],
inducing_index_points_initializer=tf.constant_initializer(
np.linspace(*x_range, num=num_inducing_points,
dtype=x.dtype)[..., np.newaxis]),
unconstrained_observation_noise_variance_initializer=(
tf.constant_initializer(
np.log(np.expm1(1.)).astype(x.dtype))),
),
])
//Do inference.
batch_size = 32
loss = lambda y, rv_y: rv_y.variational_loss(
y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0])
model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss)
model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False)
//Make predictions.
yhats = [model(x_tst) for _ in range(100)]**
"
and i get the following
error output=
"**:7: UserWarning:
layer.add_variable
is deprecated and will be removed in a future version. Please use thelayer.add_weight()
method instead.self._amplitude = self.add_variable(
:12: UserWarning:
layer.add_variable
is deprecated and will be removed in a future version. Please use thelayer.add_weight()
method instead.self._length_scale = self.add_variable(
ValueError Traceback (most recent call last)
in <cell line: 2>()
1 num_inducing_points = 40
----> 2 model = tf.keras.Sequential([
3 tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype),
4 tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False),
5 tfp.layers.VariationalGaussianProcess(
1 frames
/usr/local/lib/python3.10/dist-packages/keras/src/models/sequential.py in add(self, layer, rebuild)
93 layer = origin_layer
94 if not isinstance(layer, Layer):
---> 95 raise ValueError(
96 "Only instances of
keras.Layer
can be "97 f"added to a Sequential model. Received: {layer} "
ValueError: Only instances of
keras.Layer
can be added to a Sequential model. Received: <tensorflow_probability.python.layers.distribution_layer.VariationalGaussianProcess object at 0x7acd5e77fc70> (of type <class 'tensorflow_probability.python.layers.distribution_layer.VariationalGaussianProcess'>)**"The text was updated successfully, but these errors were encountered: