-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmobilenet.ts
71 lines (66 loc) · 2.34 KB
/
mobilenet.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tfc from '@tensorflow/tfjs-converter';
import * as tf from '@tensorflow/tfjs-core';
const GOOGLE_CLOUD_STORAGE_DIR =
'https://tfhub.dev/google/tfjs-model/imagenet/';
const MODEL_FILE_URL = 'mobilenet_v2_050_224/feature_vector/3/default/1';
const PREPROCESS_DIVISOR = 255 / 2;
const STORAGE_KEY = 'mobilenet_model';
export interface TopKValue {
label: string;
value: number;
}
export class MobileNet {
private model: tfc.GraphModel;
constructor() { }
async load() {
// save model into local storage as base64 string
// const storageHandler = getApp().globalData.localStorageIO(STORAGE_KEY);
// save model into files (weight binary)
const storageHandler = getApp().globalData.fileStorageIO(
STORAGE_KEY, wx.getFileSystemManager());
try {
this.model = await tfc.loadGraphModel(storageHandler);
} catch (e) {
this.model = await tfc.loadGraphModel(
GOOGLE_CLOUD_STORAGE_DIR + MODEL_FILE_URL, { fromTFHub: true });
this.model.save(storageHandler);
}
}
dispose() {
if (this.model) {
this.model.dispose();
}
}
/**
* Infer through MobileNet. This does standard ImageNet pre-processing before
* inferring through the model. This method returns named activations as well
* as softmax logits.
*
* @param input un-preprocessed input Array.
* @return The softmax logits.
*/
predict(input: tf.Tensor) {
const preprocessedInput = tf.div(
tf.sub(tf.cast(input, 'float32'), PREPROCESS_DIVISOR),
PREPROCESS_DIVISOR);
const reshapedInput =
tf.reshape(preprocessedInput, [1, ...preprocessedInput.shape]);
return this.model.predict(reshapedInput);
}
}