RLzoo is a collection of the most practical reinforcement learning algorithms, frameworks and applications. It is implemented with Tensorflow 2.0 and API of neural network layers in TensorLayer 2, to provide a hands-on fast-developing approach for reinforcement learning practices and benchmarks. It supports basic toy-tests like [OpenAI Gym](https://gym.openai.com/) and [DeepMind Control Suite](https://github.com/deepmind/dm_control) with very simple configurations. Moreover, RLzoo supports robot learning benchmark environment [RLBench](https://github.com/stepjam/RLBench) based on [Vrep](http://www.coppeliarobotics.com/)/[Pyrep](https://github.com/stepjam/PyRep) simulator. Other large-scale distributed training framework for more realistic scenarios with [Unity 3D](https://github.com/Unity-Technologies/ml-agents),
0 commit comments