-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster.py
78 lines (65 loc) · 2.99 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import utilities as util
class Cluster:
def __init__(self, mean, problem):
self.mean = mean
self.problem = problem
self.population = []
self.changed = True
self.linkageModel = []
def append(self, solution):
"""Adds a solution to the population of this cluster."""
self.population.append(solution)
def clear(self):
"""Clears the population of this cluster."""
self.population.clear()
def computeMean(self):
"""Compute the mean of the cluster and determine if it has changed."""
mean = np.zeros(self.problem.numberOfObjectives).tolist()
# Only compute the mean if the cluster has solutions in its population.
if len(self.population) > 0:
for objective in range(self.problem.numberOfObjectives):
for solution in self.population:
mean[objective] += solution.fitness[objective]
mean[objective] /= len(self.population)
if mean != self.mean:
self.mean = mean
self.changed = True
else:
self.changed = False
def learnLinkageModel(self, selection):
"""Learns the linkage model using the Unweighted Pair Grouping Method with Arithmetic-mean (UPGMA) procedure."""
# Compute the mutual information N-by-N matrix, where N is the problem size (amount of variables).
mutualInformationMatrix = np.zeros((self.problem.problemSize, self.problem.problemSize))
for x in range(self.problem.problemSize):
for y in range(x):
mutualInformationMatrix[x][y] = util.computeMutualInformation(x, y, selection)
mutualInformationMatrix[y][x] = mutualInformationMatrix[x][y]
# Initialize the subsets and linkage model with all univariate subsets.
subsets = []
linkageModel = []
for x in range(self.problem.problemSize):
subsets.append([x])
linkageModel.append([x])
# Consecutively combine two closest subsets until the subset containing all variable indices is created.
while len(subsets) > 2:
X = subsets[0]
Y = subsets[1]
closestPair = (X, Y)
closestPairSimilarity = util.computeMutualInformationUPGMA(X, Y, mutualInformationMatrix)
for X in subsets:
for Y in subsets:
if X != Y:
similarity = util.computeMutualInformationUPGMA(X, Y, mutualInformationMatrix)
if similarity > closestPairSimilarity:
closestPair = (X, Y)
# Combine the closest pair.
X = closestPair[0]
Y = closestPair[1]
subsets.remove(X)
subsets.remove(Y)
combinedPair = X + Y
subsets.append(combinedPair)
# Add the combined pair to the linkage model.
linkageModel.append(combinedPair)
self.linkageModel = linkageModel