-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.py
63 lines (54 loc) · 2.5 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import math
def euclidianDistance(a, b):
"""Calculates the Euclidian distance between points a and b."""
return np.linalg.norm(np.array(a) - np.array(b))
def hammingDistance(a, b):
"""Calculates the Hamming distance between points a and b."""
return np.count_nonzero(np.array(a) != np.array(b))
def randomGenotype(n):
"""Generates a random genotype of length n."""
return np.random.randint(2, size=n).tolist()
def computeProbability(x, v, population):
"""Compute the probability of variable x occuring with the given value v in the given population."""
occurrences = 0
for solution in population:
if solution.genotype[x] == v:
occurrences += 1
return occurrences / len(population)
def computeJointProbability(x, y, v1, v2, population):
"""Compute the joint probability of variable x and y occuring with the given values in the given population."""
occurrences = 0
for solution in population:
if solution.genotype[x] == v1 and solution.genotype[y] == v2:
occurrences += 1
return occurrences / len(population)
def computeEntropy(x, population):
"""Compute the entropy of variable x in the given population."""
entropy = 0
possibleValues = [0, 1]
for value in possibleValues:
probability = computeProbability(x, value, population)
if probability != 0:
entropy -= probability * math.log2(probability)
return entropy
def computeJointEntropy(x, y, population):
"""Compute the joint entropy of variable x and y in the given population."""
jointEntropy = 0
possibleValues = [0, 1]
for v1 in possibleValues:
for v2 in possibleValues:
jointProbability = computeJointProbability(x, y, v1, v2, population)
if jointProbability != 0:
jointEntropy -= jointProbability * math.log2(jointProbability)
return jointEntropy
def computeMutualInformation(x, y, population):
"""Compute the mutual information of variable x and y in the given population."""
return computeEntropy(x, population) + computeEntropy(y, population) - computeJointEntropy(x, y, population)
def computeMutualInformationUPGMA(X, Y, mutualInformationMatrix):
"""Compute the UPGMA mutual information of variable X and Y using the given mutual information matrix."""
mutualInformationUPGMA = 0
for x in X:
for y in Y:
mutualInformationUPGMA += mutualInformationMatrix[x][y]
return mutualInformationUPGMA / (len(X) * len(Y))