|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "id": "cd9f9a3b", |
| 7 | + "metadata": {}, |
| 8 | + "source": [ |
| 9 | + " " |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "id": "774e19ed", |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "自动求导\n", |
| 20 | + "符号求导\n", |
| 21 | + "数值求导\n", |
| 22 | + "计算图:\n", |
| 23 | + "将代码分解成操作子,将计算表示成一个无环图" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 2, |
| 29 | + "id": "4971f6b5", |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [ |
| 32 | + { |
| 33 | + "data": { |
| 34 | + "text/plain": [ |
| 35 | + "tensor([0., 1., 2., 3.])" |
| 36 | + ] |
| 37 | + }, |
| 38 | + "execution_count": 2, |
| 39 | + "metadata": {}, |
| 40 | + "output_type": "execute_result" |
| 41 | + } |
| 42 | + ], |
| 43 | + "source": [ |
| 44 | + "import torch\n", |
| 45 | + "x=torch.arange(4.0)\n", |
| 46 | + "x" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 3, |
| 52 | + "id": "f72fc4ce", |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [ |
| 55 | + { |
| 56 | + "data": { |
| 57 | + "text/plain": [ |
| 58 | + "tensor([0., 1., 2., 3.], requires_grad=True)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + "execution_count": 3, |
| 62 | + "metadata": {}, |
| 63 | + "output_type": "execute_result" |
| 64 | + } |
| 65 | + ], |
| 66 | + "source": [ |
| 67 | + "x.requires_grad_(True)" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "id": "adbe5cb4", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "现在让我们计算y" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 4, |
| 81 | + "id": "03accfc8", |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [ |
| 84 | + { |
| 85 | + "data": { |
| 86 | + "text/plain": [ |
| 87 | + "tensor(28., grad_fn=<MulBackward0>)" |
| 88 | + ] |
| 89 | + }, |
| 90 | + "execution_count": 4, |
| 91 | + "metadata": {}, |
| 92 | + "output_type": "execute_result" |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": [ |
| 96 | + "y=2*torch.dot(x,x)\n", |
| 97 | + "y" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "markdown", |
| 102 | + "id": "c93e90fc", |
| 103 | + "metadata": {}, |
| 104 | + "source": [ |
| 105 | + "通过调用反向传播函数来自动计算y关于x每个分量的梯度" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": 6, |
| 111 | + "id": "ddf77250", |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [ |
| 114 | + { |
| 115 | + "data": { |
| 116 | + "text/plain": [ |
| 117 | + "tensor([ 0., 4., 8., 12.])" |
| 118 | + ] |
| 119 | + }, |
| 120 | + "execution_count": 6, |
| 121 | + "metadata": {}, |
| 122 | + "output_type": "execute_result" |
| 123 | + } |
| 124 | + ], |
| 125 | + "source": [ |
| 126 | + "y.backward()\n", |
| 127 | + "x.grad" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 7, |
| 133 | + "id": "83c3201d", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [ |
| 136 | + { |
| 137 | + "data": { |
| 138 | + "text/plain": [ |
| 139 | + "tensor([True, True, True, True])" |
| 140 | + ] |
| 141 | + }, |
| 142 | + "execution_count": 7, |
| 143 | + "metadata": {}, |
| 144 | + "output_type": "execute_result" |
| 145 | + } |
| 146 | + ], |
| 147 | + "source": [ |
| 148 | + "x.grad==4*x" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "markdown", |
| 153 | + "id": "fcd7608d", |
| 154 | + "metadata": {}, |
| 155 | + "source": [ |
| 156 | + "现在我们计算x的另一个函数" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 17, |
| 162 | + "id": "01d6ef51", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "name": "stdout", |
| 167 | + "output_type": "stream", |
| 168 | + "text": [ |
| 169 | + "tensor(6., grad_fn=<SumBackward0>)\n", |
| 170 | + "tensor([1., 1., 1., 1.])\n" |
| 171 | + ] |
| 172 | + } |
| 173 | + ], |
| 174 | + "source": [ |
| 175 | + "#在默认情况下,Pytorch会累积梯度,我们需要清除之前的值\n", |
| 176 | + "x.grad.zero_()#pytorch中下划线表示重写内容\n", |
| 177 | + "y=x.sum()\n", |
| 178 | + "print(y)\n", |
| 179 | + "y.sum().backward()\n", |
| 180 | + "print(x.grad)" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "id": "16f40283", |
| 186 | + "metadata": {}, |
| 187 | + "source": [ |
| 188 | + "深度学习中,我们的目的不是计算微分矩阵,而是批量中每个样本单独计算的偏导数之和。" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": 18, |
| 194 | + "id": "e123c634", |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [ |
| 197 | + { |
| 198 | + "data": { |
| 199 | + "text/plain": [ |
| 200 | + "tensor([0., 2., 4., 6.])" |
| 201 | + ] |
| 202 | + }, |
| 203 | + "execution_count": 18, |
| 204 | + "metadata": {}, |
| 205 | + "output_type": "execute_result" |
| 206 | + } |
| 207 | + ], |
| 208 | + "source": [ |
| 209 | + "x.grad.zero_()\n", |
| 210 | + "y=x*x\n", |
| 211 | + "#等价于y.backward(torch.ones(len(x)))\n", |
| 212 | + "y.sum().backward()\n", |
| 213 | + "x.grad" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "markdown", |
| 218 | + "id": "c26a32f5", |
| 219 | + "metadata": {}, |
| 220 | + "source": [ |
| 221 | + "将某些计算移动到记录的计算图之外" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": 19, |
| 227 | + "id": "9c46d0f5", |
| 228 | + "metadata": {}, |
| 229 | + "outputs": [ |
| 230 | + { |
| 231 | + "data": { |
| 232 | + "text/plain": [ |
| 233 | + "tensor([True, True, True, True])" |
| 234 | + ] |
| 235 | + }, |
| 236 | + "execution_count": 19, |
| 237 | + "metadata": {}, |
| 238 | + "output_type": "execute_result" |
| 239 | + } |
| 240 | + ], |
| 241 | + "source": [ |
| 242 | + "x.grad.zero_()\n", |
| 243 | + "y=x*x\n", |
| 244 | + "u=y.detach()#把y当作一个常数\n", |
| 245 | + "z=u*x\n", |
| 246 | + "\n", |
| 247 | + "z.sum().backward()\n", |
| 248 | + "x.grad==u" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": 20, |
| 254 | + "id": "e5453970", |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [ |
| 257 | + { |
| 258 | + "data": { |
| 259 | + "text/plain": [ |
| 260 | + "tensor([True, True, True, True])" |
| 261 | + ] |
| 262 | + }, |
| 263 | + "execution_count": 20, |
| 264 | + "metadata": {}, |
| 265 | + "output_type": "execute_result" |
| 266 | + } |
| 267 | + ], |
| 268 | + "source": [ |
| 269 | + "x.grad.zero_()\n", |
| 270 | + "y.sum().backward()\n", |
| 271 | + "x.grad==2*x" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "markdown", |
| 276 | + "id": "925bf83e", |
| 277 | + "metadata": {}, |
| 278 | + "source": [ |
| 279 | + "构建函数的计算图,通过Python控制流" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": 22, |
| 285 | + "id": "3fdf0d53", |
| 286 | + "metadata": {}, |
| 287 | + "outputs": [], |
| 288 | + "source": [ |
| 289 | + "def f(a):\n", |
| 290 | + " b=a*2\n", |
| 291 | + " while b.norm()<1000:\n", |
| 292 | + " b=b*2\n", |
| 293 | + " if b.sum()>0:\n", |
| 294 | + " c=b\n", |
| 295 | + " else:\n", |
| 296 | + " c=100*b\n", |
| 297 | + " return c\n", |
| 298 | + "\n", |
| 299 | + "a=torch.randn(size=(),requires_grad=True)#标量,随机数\n", |
| 300 | + "d=f(a)\n", |
| 301 | + "d.backward()" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "cell_type": "code", |
| 306 | + "execution_count": null, |
| 307 | + "id": "fe0d7f7d", |
| 308 | + "metadata": {}, |
| 309 | + "outputs": [], |
| 310 | + "source": [] |
| 311 | + } |
| 312 | + ], |
| 313 | + "metadata": { |
| 314 | + "kernelspec": { |
| 315 | + "display_name": "py38", |
| 316 | + "language": "python", |
| 317 | + "name": "py38" |
| 318 | + }, |
| 319 | + "language_info": { |
| 320 | + "codemirror_mode": { |
| 321 | + "name": "ipython", |
| 322 | + "version": 3 |
| 323 | + }, |
| 324 | + "file_extension": ".py", |
| 325 | + "mimetype": "text/x-python", |
| 326 | + "name": "python", |
| 327 | + "nbconvert_exporter": "python", |
| 328 | + "pygments_lexer": "ipython3", |
| 329 | + "version": "3.8.13" |
| 330 | + } |
| 331 | + }, |
| 332 | + "nbformat": 4, |
| 333 | + "nbformat_minor": 5 |
| 334 | +} |
0 commit comments