|
| 1 | +{-# LANGUAGE BangPatterns #-} |
| 2 | +{-# LANGUAGE LinearTypes #-} |
| 3 | +{-# LANGUAGE LambdaCase #-} |
| 4 | +{-# LANGUAGE GADTs #-} |
| 5 | +{-# LANGUAGE NoImplicitPrelude #-} |
| 6 | + |
| 7 | +-- | Mutable Linear Deque |
| 8 | +-- |
| 9 | +-- This module provides a pure interface to a mutable deque. |
| 10 | +-- |
| 11 | +-- It is designed to be imported qualfied: |
| 12 | +-- |
| 13 | +-- > import qualfied Data.Deque.Mutable.Linear as Deque |
| 14 | +module Data.Deque.Mutable.Linear |
| 15 | + ( |
| 16 | + -- * Allocation |
| 17 | + alloc |
| 18 | + , fromList |
| 19 | + -- * Querying |
| 20 | + , size |
| 21 | + , length |
| 22 | + , isFull |
| 23 | + , peekRight |
| 24 | + , peekLeft |
| 25 | + -- * Modification |
| 26 | + , addLeft |
| 27 | + , addRight |
| 28 | + , popLeft |
| 29 | + , popRight |
| 30 | + , map |
| 31 | + -- * Consumption |
| 32 | + , toList |
| 33 | + ) |
| 34 | +where |
| 35 | + |
| 36 | +import qualified Data.Array.Mutable.Linear as Array |
| 37 | +import Data.Unrestricted.Linear |
| 38 | +import Prelude.Linear hiding (length, map) |
| 39 | +import qualified Prelude |
| 40 | +import GHC.Stack |
| 41 | + |
| 42 | + |
| 43 | +-- # Types |
| 44 | +------------------------------------------------------------------------------- |
| 45 | + |
| 46 | +data Deque a where |
| 47 | + Deque :: Int -> Maybe (Int,Int) -> !(Array.Array a) %1-> Deque a |
| 48 | + -- This is: Deque size (Maybe (left ptr,right ptr)) array |
| 49 | + -- |
| 50 | + -- The deque is represented as a slice from the left pointer |
| 51 | + -- moving forwards (and wrapping the end) to the right pointer. |
| 52 | + -- We are full when the right pointer is one less than the left pointer |
| 53 | + -- modulo the array size. An empty deque has no left or right pointers |
| 54 | + -- and we start a singleton deque with both pointers at 0. |
| 55 | + -- |
| 56 | + -- Invariants: |
| 57 | + -- > If empty, we store no pointers |
| 58 | + -- > The first int is the size of the array |
| 59 | + -- > If we store pointers l,r then [arr[l], ... arr[r]] is the deque |
| 60 | + |
| 61 | +data Dir = L | R -- A left or right direction |
| 62 | + |
| 63 | +-- # Internal Helpers |
| 64 | +------------------------------------------------------------------------------- |
| 65 | + |
| 66 | +-- Given a size, get the next index |
| 67 | +nextIx :: Int -> Int -> Int |
| 68 | +nextIx sz ix = (ix + 1) `mod` sz |
| 69 | + |
| 70 | +-- Given a size, get the previous index |
| 71 | +prevIx :: Int -> Int -> Int |
| 72 | +prevIx sz ix = (ix - 1 + sz) `mod` sz |
| 73 | + |
| 74 | +-- # Allocation |
| 75 | +------------------------------------------------------------------------------- |
| 76 | + |
| 77 | +-- | Run a computation of an empty Deque with a given size |
| 78 | +alloc :: HasCallStack => Int -> (Deque a %1-> Ur b) %1-> Ur b |
| 79 | +alloc k f = Array.alloc k err $ \arr -> f (Deque k Nothing arr) where |
| 80 | + err = Prelude.error "Accessing error element of a collection!" |
| 81 | + |
| 82 | +-- | Run a computation on a Deque that is deterimined by the given the list |
| 83 | +-- where we treat the start and end of the list as the left and right pointers, |
| 84 | +-- with the total capacity as the length of the list. |
| 85 | +fromList :: [a] -> (Deque a %1-> Ur b) %1-> Ur b |
| 86 | +fromList xs f | l <- Prelude.length xs = Array.fromList xs $ |
| 87 | + \arr -> f (Deque l (Just (0,l-1)) arr) |
| 88 | + |
| 89 | + |
| 90 | +-- # Querying |
| 91 | +------------------------------------------------------------------------------- |
| 92 | + |
| 93 | +-- | The total capacity of the Deque |
| 94 | +size :: Deque a %1-> (Ur Int, Deque a) |
| 95 | +size (Deque sz ptrs arr) = (Ur sz, Deque sz ptrs arr) |
| 96 | + |
| 97 | +-- | The number of elements currently stored |
| 98 | +length :: Deque a %1-> (Ur Int, Deque a) |
| 99 | +length (Deque sz Nothing arr) = (Ur 0, Deque sz Nothing arr) |
| 100 | +length (Deque sz p@(Just (l,r)) arr) |
| 101 | + | l <= r = (Ur (1 + r - l), Deque sz p arr) |
| 102 | + | otherwise = (Ur (sz + 1 - l + r), Deque sz p arr) |
| 103 | + |
| 104 | +-- | We are full if the length equals the size |
| 105 | +isFull :: Deque a %1-> (Ur Bool, Deque a) |
| 106 | +isFull d = |
| 107 | + length d & \(Ur len, Deque sz p arr) -> (Ur (len == sz), Deque sz p arr) |
| 108 | + |
| 109 | +peek :: HasCallStack => Dir -> Deque a %1-> (Ur a, Deque a) |
| 110 | +peek _ (Deque _ Nothing arr) = error "Peeking in empty deque." $ arr |
| 111 | +peek dir (Deque sz p@(Just (l,r)) arr) = case dir of |
| 112 | + L -> Array.read arr l & \(x, arr') -> (x, Deque sz p arr') |
| 113 | + R -> Array.read arr r & \(x, arr') -> (x, Deque sz p arr') |
| 114 | + |
| 115 | +-- | View the top of the left queue |
| 116 | +peekLeft :: HasCallStack => Deque a %1-> (Ur a, Deque a) |
| 117 | +peekLeft = peek L |
| 118 | + |
| 119 | +-- | View the top of the right queue |
| 120 | +peekRight :: HasCallStack => Deque a %1-> (Ur a, Deque a) |
| 121 | +peekRight = peek R |
| 122 | + |
| 123 | + |
| 124 | +-- # Modification |
| 125 | +------------------------------------------------------------------------------- |
| 126 | + |
| 127 | +add :: HasCallStack => Dir -> Deque a %1-> a -> Deque a |
| 128 | +add dir deq x = isFull deq & \case |
| 129 | + (Ur True, deq') -> error "Adding to a full deque" $ deq' |
| 130 | + (Ur False, Deque sz Nothing arr) -> |
| 131 | + Deque sz (Just (0,0)) (Array.write arr 0 x) |
| 132 | + (Ur False, Deque sz (Just (l,r)) arr) -> case dir of |
| 133 | + L -> Array.write arr (prevIx sz l) x & |
| 134 | + \arr' -> Deque sz (Just (prevIx sz l, r)) arr' |
| 135 | + R -> Array.write arr (nextIx sz r) x & |
| 136 | + \arr' -> Deque sz (Just (l,nextIx sz r)) arr' |
| 137 | + |
| 138 | +-- | Add to the left queue |
| 139 | +addLeft :: HasCallStack => Deque a %1-> a -> Deque a |
| 140 | +addLeft = add L |
| 141 | + |
| 142 | +-- | Add to the right queue |
| 143 | +addRight :: HasCallStack => Deque a %1-> a -> Deque a |
| 144 | +addRight = add R |
| 145 | + |
| 146 | +pop :: HasCallStack => Dir -> Deque a %1-> Deque a |
| 147 | +pop _ (Deque _ Nothing arr) = error "Popping from empty deque." $ arr |
| 148 | +pop dir (Deque sz (Just (l,r)) arr) |
| 149 | + | l==r = Deque sz Nothing arr |
| 150 | + | otherwise = case dir of |
| 151 | + L -> Deque sz (Just (nextIx sz l, r)) arr |
| 152 | + R -> Deque sz (Just (l, prevIx sz r)) arr |
| 153 | + |
| 154 | +-- | Remove the last added element from the left queue |
| 155 | +popLeft :: HasCallStack => Deque a %1-> Deque a |
| 156 | +popLeft = pop L |
| 157 | + |
| 158 | +-- | Remove the last added element from the right queue |
| 159 | +popRight :: HasCallStack => Deque a %1-> Deque a |
| 160 | +popRight = pop R |
| 161 | + |
| 162 | +-- Note: We can't use a Prelude.Functor nor a Data.Functor |
| 163 | +-- because the mapped function need not be linear but we must |
| 164 | +-- consume the Deque linearly. The types don't align. |
| 165 | +map :: (a -> b) -> Deque a %1-> Deque b |
| 166 | +map f (Deque sz p arr) = Deque sz p (Array.map f arr) |
| 167 | + |
| 168 | + |
| 169 | +-- # Consumption |
| 170 | +------------------------------------------------------------------------------- |
| 171 | + |
| 172 | +-- | Convert the Deque to a list where the first element is the left |
| 173 | +-- top and the last element is the right top |
| 174 | +toList :: Deque a %1-> Ur [a] |
| 175 | +toList (Deque _ Nothing arr) = lseq arr (Ur []) |
| 176 | +toList (Deque sz (Just (l0,r0)) arr) = loop l0 r0 [] arr where |
| 177 | + loop :: Int -> Int -> [a] -> Array.Array a %1-> Ur [a] |
| 178 | + loop l r xs arr0 |
| 179 | + | l==r = Array.read arr0 r & \(Ur a, arr1) -> lseq arr1 (Ur (a:xs)) |
| 180 | + | otherwise = Array.read arr0 r & \(Ur a, arr1) -> |
| 181 | + loop l (prevIx sz r) (a:xs) arr1 |
| 182 | + |
0 commit comments