|
1 |
| -from os.path import dirname, join |
| 1 | +import hydra |
| 2 | +from hydra.utils import get_original_cwd |
| 3 | +from omegaconf import DictConfig, OmegaConf |
| 4 | + |
| 5 | +from os.path import join |
2 | 6 | from underthesea.models.fast_crf_sequence_tagger import FastCRFSequenceTagger
|
3 | 7 | from underthesea.trainers.crf_trainer import CRFTrainer
|
4 | 8 | from underthesea.transformer.tagged_feature import lower_words as dictionary
|
5 | 9 | from datasets import load_dataset
|
6 | 10 | from underthesea.utils.preprocess_dataset import preprocess_word_tokenize_dataset
|
7 | 11 |
|
8 |
| -features = [ |
9 |
| - # word unigram and bigram and trigram |
10 |
| - "T[-2]", |
11 |
| - "T[-1]", |
12 |
| - "T[0]", |
13 |
| - "T[1]", |
14 |
| - "T[2]", |
15 |
| - "T[-2,-1]", |
16 |
| - "T[-1,0]", |
17 |
| - "T[0,1]", |
18 |
| - "T[1,2]", |
19 |
| - "T[-2,0]", |
20 |
| - "T[-1,1]", |
21 |
| - "T[0,2]", |
22 |
| - "T[-2].lower", |
23 |
| - "T[-1].lower", |
24 |
| - "T[0].lower", |
25 |
| - "T[1].lower", |
26 |
| - "T[2].lower", |
27 |
| - "T[-2,-1].lower", |
28 |
| - "T[-1,0].lower", |
29 |
| - "T[0,1].lower", |
30 |
| - "T[1,2].lower", |
31 |
| - "T[-1].isdigit", |
32 |
| - "T[0].isdigit", |
33 |
| - "T[1].isdigit", |
34 |
| - "T[-2].istitle", |
35 |
| - "T[-1].istitle", |
36 |
| - "T[0].istitle", |
37 |
| - "T[1].istitle", |
38 |
| - "T[2].istitle", |
39 |
| - "T[0,1].istitle", |
40 |
| - "T[0,2].istitle", |
41 |
| - "T[-2].is_in_dict", |
42 |
| - "T[-1].is_in_dict", |
43 |
| - "T[0].is_in_dict", |
44 |
| - "T[1].is_in_dict", |
45 |
| - "T[2].is_in_dict", |
46 |
| - "T[-2,-1].is_in_dict", |
47 |
| - "T[-1,0].is_in_dict", |
48 |
| - "T[0,1].is_in_dict", |
49 |
| - "T[1,2].is_in_dict", |
50 |
| - "T[-2,0].is_in_dict", |
51 |
| - "T[-1,1].is_in_dict", |
52 |
| - "T[0,2].is_in_dict", |
53 |
| -] |
54 |
| -model = FastCRFSequenceTagger(features, dictionary) |
55 | 12 |
|
56 |
| -pwd = dirname(__file__) |
57 |
| -output_dir = join(pwd, "tmp/ws_20220224") |
58 |
| -training_params = { |
59 |
| - "output_dir": output_dir, |
60 |
| - "params": { |
61 |
| - "c1": 1.0, # coefficient for L1 penalty |
62 |
| - "c2": 1e-3, # coefficient for L2 penalty |
63 |
| - "max_iterations": 1000, # |
64 |
| - # include transitions that are possible, but not observed |
65 |
| - "feature.possible_transitions": True, |
66 |
| - "feature.possible_states": True, |
67 |
| - }, |
68 |
| -} |
| 13 | +@hydra.main(version_base=None, config_path="conf/", config_name="config") |
| 14 | +def train(cfg: DictConfig) -> None: |
| 15 | + wd = get_original_cwd() |
| 16 | + print(OmegaConf.to_yaml(cfg)) |
| 17 | + |
| 18 | + features = [ |
| 19 | + # word unigram and bigram and trigram |
| 20 | + "T[-2]", "T[-1]", "T[0]", "T[1]", "T[2]", |
| 21 | + "T[-2,-1]", "T[-1,0]", "T[0,1]", "T[1,2]", "T[-2,0]", |
| 22 | + "T[-1,1]", "T[0,2]", |
| 23 | + "T[-2].lower", "T[-1].lower", "T[0].lower", "T[1].lower", "T[2].lower", |
| 24 | + "T[-2,-1].lower", "T[-1,0].lower", "T[0,1].lower", "T[1,2].lower", |
| 25 | + "T[-1].isdigit", "T[0].isdigit", "T[1].isdigit", |
| 26 | + "T[-2].istitle", "T[-1].istitle", "T[0].istitle", "T[1].istitle", "T[2].istitle", |
| 27 | + "T[0,1].istitle", "T[0,2].istitle", |
| 28 | + "T[-2].is_in_dict", "T[-1].is_in_dict", "T[0].is_in_dict", "T[1].is_in_dict", "T[2].is_in_dict", |
| 29 | + "T[-2,-1].is_in_dict", "T[-1,0].is_in_dict", |
| 30 | + "T[0,1].is_in_dict", "T[1,2].is_in_dict", "T[-2,0].is_in_dict", |
| 31 | + "T[-1,1].is_in_dict", "T[0,2].is_in_dict", |
| 32 | + ] |
| 33 | + model = FastCRFSequenceTagger(features, dictionary) |
| 34 | + |
| 35 | + training_params = { |
| 36 | + "output_dir": join(wd, cfg.train.output_dir), |
| 37 | + "params": { |
| 38 | + "c1": cfg.train.params.c1, # coefficient for L1 penalty |
| 39 | + "c2": cfg.train.params.c2, # coefficient for L2 penalty |
| 40 | + "max_iterations": cfg.train.params.max_iterations, # |
| 41 | + # include transitions that are possible, but not observed |
| 42 | + "feature.possible_transitions": cfg.train.params.feature.possible_transitions, |
| 43 | + "feature.possible_states": cfg.train.params.feature.possible_states, |
| 44 | + }, |
| 45 | + } |
| 46 | + |
| 47 | + dataset_name = cfg.dataset.name |
| 48 | + dataset_params = cfg.dataset.params |
| 49 | + |
| 50 | + # Check if subset exists in the config and load dataset accordingly |
| 51 | + if 'subset' in cfg.dataset: |
| 52 | + dataset_subset = cfg.dataset.subset |
| 53 | + dataset = load_dataset(dataset_name, dataset_subset, **dataset_params) |
| 54 | + else: |
| 55 | + dataset = load_dataset(dataset_name, **dataset_params) |
69 | 56 |
|
| 57 | + corpus = preprocess_word_tokenize_dataset(dataset) |
70 | 58 |
|
71 |
| -dataset = load_dataset("undertheseanlp/UTS_WTK", "base") |
72 |
| -corpus = preprocess_word_tokenize_dataset(dataset) |
| 59 | + train_dataset = corpus["train"] |
| 60 | + test_dataset = corpus["test"] |
| 61 | + if cfg.dataset_extras.include_test: |
| 62 | + train_dataset = train_dataset + test_dataset |
| 63 | + print("Train dataset", len(train_dataset)) |
| 64 | + print("Test dataset", len(test_dataset)) |
73 | 65 |
|
74 |
| -train_dataset = corpus["train"] |
75 |
| -test_dataset = corpus["test"] |
76 |
| -print("Train dataset", len(train_dataset)) |
77 |
| -print("Test dataset", len(test_dataset)) |
| 66 | + trainer = CRFTrainer(model, training_params, train_dataset, test_dataset) |
| 67 | + trainer.train() |
78 | 68 |
|
79 |
| -trainer = CRFTrainer(model, training_params, train_dataset, test_dataset) |
80 | 69 |
|
81 |
| -trainer.train() |
| 70 | +if __name__ == "__main__": |
| 71 | + train() |
0 commit comments