forked from polarisZhao/PFLD-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch2onnx.py
40 lines (33 loc) · 1.39 KB
/
pytorch2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
import os
import argparse
from models.pfld import PFLDInference
from torch.autograd import Variable
import torch
import onnxsim
parser = argparse.ArgumentParser(description='pytorch2onnx')
parser.add_argument('--torch_model', default="./checkpoint/snapshot/checkpoint.pth.tar")
parser.add_argument('--onnx_model', default="./output/pfld.onnx")
parser.add_argument('--onnx_model_sim', help='Output ONNX model', default="./output/pfld-sim.onnx")
args = parser.parse_args()
print("=====> load pytorch checkpoint...")
checkpoint = torch.load(args.torch_model, map_location=torch.device('cpu'))
plfd_backbone = PFLDInference()
plfd_backbone.load_state_dict(checkpoint['plfd_backbone'])
print("PFLD bachbone:", plfd_backbone)
print("=====> convert pytorch model to onnx...")
dummy_input = Variable(torch.randn(1, 3, 112, 112))
input_names = ["input_1"]
output_names = [ "output_1" ]
torch.onnx.export(plfd_backbone, dummy_input, args.onnx_model, verbose=True, input_names=input_names, output_names=output_names)
print("====> check onnx model...")
import onnx
model = onnx.load(args.onnx_model)
onnx.checker.check_model(model)
print("====> Simplifying...")
model_opt = onnxsim.simplify(args.onnx_model)
# print("model_opt", model_opt)
onnx.save(model_opt, args.onnx_model_sim)
print("onnx model simplify Ok!")