forked from kelvins/algorithms-and-data-structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstras_MinHeap.cpp
100 lines (86 loc) · 3.11 KB
/
Dijkstras_MinHeap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/**
* Dijkstras_MinHeap.cpp
*
* This file implements Dijkstra's algorithm using a min-heap (priority queue).
* The algorithm finds the shortest paths from the source vertex to all other vertices in a weighted graph.
*
* Functions:
* - void dijkstra(const unordered_map<int, unordered_map<int, int>>& graph, int start_vertex)
* - graph: An adjacency list representation of the graph.
* - key: vertex
* - value: unordered_map of connected vertices and their edge weights
* - start_vertex: The starting vertex for Dijkstra's algorithm.
*
* Example Usage:
* Uncomment the main function to run a sample test case.
* The sample graph used in the main function is represented as an adjacency list.
*/
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
#include <limits>
using namespace std;
// A structure to represent a node in the priority queue
struct Node {
int vertex;
int distance;
bool operator>(const Node& other) const {
return distance > other.distance;
}
};
void dijkstra(const unordered_map<int, unordered_map<int, int>>& graph, int start_vertex) {
// Initialize distances and predecessors
unordered_map<int, int> dist;
unordered_map<int, int> pred;
for (const auto& pair : graph) {
dist[pair.first] = numeric_limits<int>::max();
pred[pair.first] = -1;
}
dist[start_vertex] = 0;
// Priority queue to store vertices and their distances
priority_queue<Node, vector<Node>, greater<Node>> priority_queue;
priority_queue.push({ start_vertex, 0 });
while (!priority_queue.empty()) {
Node current = priority_queue.top();
priority_queue.pop();
// If this distance is not updated, continue
if (current.distance > dist[current.vertex]) {
continue;
}
// Visit each neighbor of the current vertex
for (const auto& neighbor_pair : graph.at(current.vertex)) {
int neighbor = neighbor_pair.first;
int weight = neighbor_pair.second;
int distance = current.distance + weight;
// If a shorter path to the neighbor is found
if (distance < dist[neighbor]) {
dist[neighbor] = distance;
pred[neighbor] = current.vertex;
priority_queue.push({ neighbor, distance });
}
}
}
// Print distances and predecessors
cout << "Distances: \n";
for (const auto& pair : dist) {
cout << "Vertex " << pair.first << ": " << pair.second << endl;
}
cout << "\nPredecessors: \n";
for (const auto& pair : pred) {
cout << "Vertex " << pair.first << ": " << pair.second << endl;
}
}
// Uncomment the following main function to run a sample test case
int main() {
// Example graph represented as an adjacency list
unordered_map<int, unordered_map<int, int>> graph = {
{0, {{1, 1}, {2, 4}}},
{1, {{0, 1}, {2, 2}, {3, 5}}},
{2, {{0, 4}, {1, 2}, {3, 1}}},
{3, {{1, 5}, {2, 1}}}
};
// Running Dijkstra's algorithm from vertex 0
dijkstra(graph, 0);
return 0;
}