-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_MNIST.py
207 lines (174 loc) · 7.02 KB
/
CNN_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import cv2
import numpy as np
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
dir = os.path.dirname(os.path.realpath(__file__))
# Parameters for training
learning_rate = 1e-4
training_iters = 50000
batch_size = 128
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
#Test method
def show_image(self, img):
cv2.imshow('img', img)
cv2.waitKey(0)
#Needed for loading weights from disk
def load_weights():
with tf.Session() as sess:
saver = tf.train.import_meta_graph(dir + '/vars.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
wc1 = graph.get_tensor_by_name('wc1:0').eval()
wc2 = graph.get_tensor_by_name('wc2:0').eval()
wd1 = graph.get_tensor_by_name('wd1:0').eval()
w_out = graph.get_tensor_by_name('w_out:0').eval()
bc1 = graph.get_tensor_by_name('bc1:0').eval()
bc2 = graph.get_tensor_by_name('bc2:0').eval()
bd1 = graph.get_tensor_by_name('bd1:0').eval()
b_out = graph.get_tensor_by_name('b_out:0').eval()
return [wc1, wc2, wd1, w_out, bc1, bc2, bd1, b_out]
#Convolution + biad add + ReLU activation
def conv2d(x, W, b, strides=1):
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
#Maxpooling
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
#Entire convolution net
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
conv1 = maxpool2d(conv1, k=2)
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer section
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout)
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32]), name='wc1'),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64]), name='wc2'),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024]), name='wd1'),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]), name='w_out')
}
biases = {
'bc1': tf.Variable(tf.random_normal([32]), name='bc1'),
'bc2': tf.Variable(tf.random_normal([64]), name='bc2'),
'bd1': tf.Variable(tf.random_normal([1024]), name='bd1'),
'out': tf.Variable(tf.random_normal([n_classes]), name='b_out')
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
rmsprop = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
''' Alternative Method '''
for i in range(15000):
batch_x, batch_y = mnist.train.next_batch(batch_size)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch_x, y: batch_y, keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
rmsprop.run(feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0}))
''' First training Method '''
# while step * batch_size < training_iters:
# batch_x, batch_y = mnist.train.next_batch(batch_size)
# # Run optimization op (backprop)
# sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
# keep_prob: dropout})
# if step % 10 == 0:
# # Calculate batch loss and accuracy
# loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
# y: batch_y,
# keep_prob: 1.})
# print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
# "{:.6f}".format(loss) + ", Training Accuracy= " + \
# "{:.5f}".format(acc))
# step += 1
# print("Optimization Finished!")
#
# # Calculate accuracy for 256 mnist test images
# print("Testing Accuracy:", \
# sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
# y: mnist.test.labels[:256],
# keep_prob: 1.}))
saver = tf.train.Saver()
path = saver.save(sess, dir + '/vars.ckpt')
for v in tf.trainable_variables():
print(v.name)
batch_x = mnist.test.images[:10]
batch_y = mnist.test.labels[:10]
out = sess.run(conv_net(batch_x, weights, biases, 1.0))
for i in range(0, len(batch_y)):
print(np.argmax(batch_y[i]), np.argmax(out[i]))
print(sess.run(biases['bc1']))
# Let's load a previously saved meta graph in the default graph
# This function returns a Saver
''' Save Variables'''
# with tf.Session() as sess:
# saver = tf.train.import_meta_graph(dir + '/vars.ckpt-128.meta')
# saver.restore(sess,tf.train.latest_checkpoint('./'))
# graph = tf.get_default_graph()
# bc1 = graph.get_tensor_by_name('bc1:0').eval()
# print(bc1)
#
print('\nLOAD TEST\n')
# var_list = load_weights()
# #
# new_weights = {
# 'wc1': var_list[0],
# 'wc2': var_list[1],
# 'wd1': var_list[2],
# 'out': var_list[3]
# }
# new_biases = {
# 'bc1': var_list[4],
# 'bc2': var_list[5],
# 'bd1': var_list[6],
# 'out': var_list[7]
# }
#
# batch_size = 10
# batch_x = mnist.test.images[:10]
# batch_y = mnist.test.labels[:10]
# with tf.Session() as sess:
# out = sess.run(conv_net2(batch_x, new_weights, new_biases, 1.0))
# print(out.shape)
# print(batch_y.shape)
# for i in range(0, len(batch_y)):
# print(np.argmax(batch_y[i]), np.argmax(out[i]))
# cv2.imshow('img', batch_x[i])