-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_mod_add_nowd.py
154 lines (128 loc) · 5.55 KB
/
train_mod_add_nowd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
from torch import nn, optim
from torch.nn import functional as F
from kloader import KTensorDataLoader
from data import gen_mod_add
from models import HomoMLP
import argparse
import math
import yaml
import wandb
assert torch.cuda.is_available()
torch.set_default_device('cuda')
config = yaml.load(open('.config.yml'), Loader=yaml.FullLoader)
argparser = argparse.ArgumentParser()
argparser.add_argument('--data-seed', type=int, default=2435253235)
argparser.add_argument('--n-train', type=int, default=3763)
argparser.add_argument('--n-test', type=int, default=5646)
argparser.add_argument('--p', type=int, default=97)
argparser.add_argument('--h', type=int)
argparser.add_argument('--depth', type=int, default=2)
argparser.add_argument('--init-scale', type=float, default=1.0)
argparser.add_argument('--lr', type=float, default=0.01)
argparser.add_argument('--lrfactor1', type=float, default=10.)
argparser.add_argument('--eval-first', type=int, default=1000)
argparser.add_argument('--eval-period', type=int, default=1000)
argparser.add_argument('--steps', type=int, default=10_000_000)
argparser.add_argument('--batch-size', type=int, default=10000)
argparser.add_argument('--eval-batch-size', type=int, default=10000)
args = argparser.parse_args()
wandb.init(
project="grokking-mod-add-nowd",
entity=config['wandb_entity'],
name=f"N{args.n_train}-P{args.p}-H{args.h}-L{args.depth}-INIT{args.init_scale}",
config=vars(args)
)
wandb.run.log_code(".")
train_data, test_data = gen_mod_add(args.data_seed, args.n_train, args.p)
train_loader = KTensorDataLoader(train_data, batch_size=min(args.batch_size, train_data[0].shape[0]), shuffle=True, drop_last=True)
train_loader_for_eval = KTensorDataLoader(train_data, batch_size=min(args.eval_batch_size, train_data[0].shape[0]), shuffle=False, drop_last=False)
test_loader = KTensorDataLoader(test_data, batch_size=min(args.eval_batch_size, test_data[0].shape[0]), shuffle=False, drop_last=False)
model = HomoMLP(init_scale=args.init_scale, L=args.depth, dimD=args.p * 2, dimH=args.h, dimO=args.p, first_layer_bias=True)
wandb.watch(model)
print('steps per epoch:', len(train_loader))
total_epochs = (args.steps + len(train_loader) - 1) // len(train_loader)
def separate_logits(y, target):
N = y.shape[0]
C = y.shape[1]
correct = y[range(N), target]
wrong = torch.masked_select(y, torch.logical_not(F.one_hot(target, num_classes=C))).reshape([N, C - 1])
return correct, wrong
class LogCrossEntropyLoss(nn.Module):
def __init__(self):
super(LogCrossEntropyLoss, self).__init__()
def forward(self, input: torch.Tensor, target: torch.Tensor):
c, w = separate_logits(input, target)
diff = (w - c.view([-1, 1])).double()
if diff.max() >= -30:
return diff.exp().sum(dim=1).log1p().sum().log().to(input.dtype) - math.log(input.shape[0])
else:
return diff.logsumexp(dim=[0, 1]).to(input.dtype) - math.log(input.shape[0])
criterion = LogCrossEntropyLoss()
optimier = optim.SGD(model.parameters(), lr=args.lr)
@torch.no_grad()
def eval_model(loader):
for batch_x, batch_y in loader.iter():
out = model(batch_x)
loss = criterion(out.double(), batch_y).item()
acc = (out.argmax(dim=-1) == batch_y).float().mean()
c, w = separate_logits(out, batch_y)
margin = (c.view([-1, 1]) - w).min().item()
return loss, acc, margin
@torch.no_grad()
def get_model_stats():
stats = {}
total_norm2 = 0
for name, param in model.named_parameters():
cur_norm2 = (param ** 2).sum().item()
stats[f'norm/{name}'] = cur_norm2 ** 0.5
total_norm2 += cur_norm2
stats[f'total_norm'] = total_norm2 ** 0.5
return stats
model.train()
cur_step = 0
log_continuous_time = 0
for eid in range(1, total_epochs):
for bid, (batch_x, batch_y) in train_loader.enum():
if cur_step % args.eval_period == 0 or cur_step <= args.eval_first:
model.eval()
log = {}
train_logloss, train_acc, train_margin = eval_model(train_loader_for_eval)
log.update({
'eval_train/logloss': train_logloss,
'eval_train/acc': train_acc,
'eval_train/margin': train_margin
})
test_logloss, test_acc, test_margin = eval_model(test_loader)
log.update({
'eval_test/logloss': test_logloss,
'eval_test/acc': test_acc,
'eval_test/margin': test_margin
})
log.update(get_model_stats())
log.update({
'epoch': eid, 'train/step_in_epoch': bid, 'train/step': cur_step,
'train/log_continuous_time': log_continuous_time
})
wandb.log(log)
model.train()
optimier.zero_grad(set_to_none=True)
out = model(batch_x)
logloss = criterion(out.double(), batch_y)
if logloss > -5:
loss = torch.exp(logloss) * args.lrfactor1
log_continuous_time = torch.logsumexp(torch.tensor([
log_continuous_time,
math.log(args.lr * args.lrfactor1)
]), dim=[0])
else:
log_continuous_time = torch.logsumexp(torch.tensor([
log_continuous_time,
#math.log(args.lr) - logloss - math.log(2) - 0.9 * torch.log(math.log(10) - logloss)
math.log(args.lr) - logloss
]), dim=[0])
# loss = -(math.log(10) - logloss) ** 0.1
loss = logloss
loss.backward()
optimier.step()
cur_step += 1