-
Notifications
You must be signed in to change notification settings - Fork 433
Description
Your current environment
The output of `python collect_env.py`
```text PyTorch version: 2.5.1 Is debug build: FalseOS: Ubuntu 22.04.5 LTS (aarch64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 4.0.3
Libc version: glibc-2.35
Python version: 3.10.17 (main, May 8 2025, 07:18:04) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.10.0-60.18.0.50.oe2203.aarch64-aarch64-with-glibc2.35
CPU:
Architecture: aarch64
CPU op-mode(s): 64-bit
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Vendor ID: HiSilicon
BIOS Vendor ID: HiSilicon
Model name: Kunpeng-920
BIOS Model name: HUAWEI Kunpeng 920 7265
Model: 0
Thread(s) per core: 1
Core(s) per socket: 64
Socket(s): 4
Stepping: 0x1
Frequency boost: disabled
CPU max MHz: 3000.0000
CPU min MHz: 200.0000
BogoMIPS: 200.00
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma dcpop asimddp asimdfhm ssbs
L1d cache: 16 MiB (256 instances)
L1i cache: 16 MiB (256 instances)
L2 cache: 128 MiB (256 instances)
L3 cache: 256 MiB (8 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
NUMA node2 CPU(s): 128-191
NUMA node3 CPU(s): 192-255
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; __user pointer sanitization
Vulnerability Spectre v2: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] onnxruntime==1.22.1
[pip3] pyzmq==27.0.0
[pip3] torch==2.5.1
[pip3] torch-npu==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.52.4
[conda] numpy 1.26.4 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] transformers 4.51.3 pypi_0 pypi
vLLM Version: 0.9.1
vLLM Ascend Version: 0.9.1rc1
ENV Variables:
ATB_OPSRUNNER_KERNEL_CACHE_TILING_SIZE=10240
ATB_OPSRUNNER_KERNEL_CACHE_LOCAL_COUNT=1
ATB_STREAM_SYNC_EVERY_RUNNER_ENABLE=0
ATB_OPSRUNNER_SETUP_CACHE_ENABLE=1
ATB_WORKSPACE_MEM_ALLOC_GLOBAL=0
ATB_DEVICE_TILING_BUFFER_BLOCK_NUM=32
ASCEND_VISIBLE_DEVICES=2
ATB_STREAM_SYNC_EVERY_KERNEL_ENABLE=0
ATB_OPSRUNNER_KERNEL_CACHE_GLOABL_COUNT=5
ATB_HOME_PATH=/usr/local/Ascend/nnal/atb/latest/atb/cxx_abi_0
ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ATB_COMPARE_TILING_EVERY_KERNEL=0
ASCEND_OPP_PATH=/usr/local/Ascend/ascend-toolkit/latest/opp
LD_LIBRARY_PATH=/usr/local/Ascend/nnal/atb/latest/atb/cxx_abi_0/lib:/usr/local/Ascend/nnal/atb/latest/atb/cxx_abi_0/examples:/usr/local/Ascend/nnal/atb/latest/atb/cxx_abi_0/tests/atbopstest:/usr/local/Ascend/ascend-toolkit/latest/tools/aml/lib64:/usr/local/Ascend/ascend-toolkit/latest/tools/aml/lib64/plugin:/usr/local/Ascend/ascend-toolkit/latest/lib64:/usr/local/Ascend/ascend-toolkit/latest/lib64/plugin/opskernel:/usr/local/Ascend/ascend-toolkit/latest/lib64/plugin/nnengine:/usr/local/Ascend/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe/op_tiling:/usr/local/Ascend/driver/lib64/common/:/usr/local/Ascend/driver/lib64/driver/:
ASCEND_AICPU_PATH=/usr/local/Ascend/ascend-toolkit/latest
ATB_OPSRUNNER_KERNEL_CACHE_TYPE=3
ATB_RUNNER_POOL_SIZE=64
ATB_STREAM_SYNC_EVERY_OPERATION_ENABLE=0
ASCEND_HOME_PATH=/usr/local/Ascend/ascend-toolkit/latest
ATB_MATMUL_SHUFFLE_K_ENABLE=1
ATB_LAUNCH_KERNEL_WITH_TILING=1
ATB_WORKSPACE_MEM_ALLOC_ALG_TYPE=1
ATB_HOST_TILING_BUFFER_BLOCK_NUM=128
ATB_SHARE_MEMORY_NAME_SUFFIX=
TORCH_DEVICE_BACKEND_AUTOLOAD=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
NPU:
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1 Version: 24.1.rc1 |
+---------------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+===========================+===============+====================================================+
| 0 910B3 | OK | 96.3 37 0 / 0 |
| 0 | 0000:C1:00.0 | 0 0 / 0 65257/ 65536 |
+===========================+===============+====================================================+
| 1 910B3 | OK | 94.3 37 0 / 0 |
| 0 | 0000:C2:00.0 | 0 0 / 0 65259/ 65536 |
+===========================+===============+====================================================+
| 2 910B3 | OK | 96.2 39 0 / 0 |
| 0 | 0000:81:00.0 | 0 0 / 0 42974/ 65536 |
+===========================+===============+====================================================+
| 3 910B3 | OK | 99.5 39 0 / 0 |
| 0 | 0000:82:00.0 | 0 0 / 0 3320 / 65536 |
+===========================+===============+====================================================+
| 4 910B3 | OK | 95.8 43 0 / 0 |
| 0 | 0000:01:00.0 | 0 0 / 0 57192/ 65536 |
+===========================+===============+====================================================+
| 5 910B3 | OK | 98.1 45 0 / 0 |
| 0 | 0000:02:00.0 | 0 0 / 0 57070/ 65536 |
+===========================+===============+====================================================+
| 6 910B3 | OK | 99.8 43 0 / 0 |
| 0 | 0000:41:00.0 | 0 0 / 0 57071/ 65536 |
+===========================+===============+====================================================+
| 7 910B3 | OK | 99.1 45 0 / 0 |
| 0 | 0000:42:00.0 | 0 0 / 0 57072/ 65536 |
+===========================+===============+====================================================+
+---------------------------+---------------+----------------------------------------------------+
| NPU Chip | Process id | Process name | Process memory(MB) |
+===========================+===============+====================================================+
| 0 0 | 1846420 | | 61917 |
+===========================+===============+====================================================+
| 1 0 | 1849807 | | 61973 |
+===========================+===============+====================================================+
| 2 0 | 2302578 | | 39689 |
+===========================+===============+====================================================+
| No running processes found in NPU 3 |
+===========================+===============+====================================================+
| 4 0 | 3712967 | | 53785 |
+===========================+===============+====================================================+
| 5 0 | 3714154 | | 53785 |
+===========================+===============+====================================================+
| 6 0 | 3714155 | | 53785 |
+===========================+===============+====================================================+
| 7 0 | 3714156 | | 53785 |
+===========================+===============+====================================================+
CANN:
package_name=Ascend-cann-toolkit
version=8.1.RC1
innerversion=V100R001C21SPC001B238
compatible_version=[V100R001C15],[V100R001C18],[V100R001C19],[V100R001C20],[V100R001C21]
arch=aarch64
os=linux
path=/usr/local/Ascend/ascend-toolkit/8.1.RC1/aarch64-linux
</details>
### 🐛 Describe the bug
我在vllm中使用多模态模型在线推理。客户端请求如下:
```python
data = {"model": "mineru",
"messages": [
# {"role": "system", "content": system_prompt},
{"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image}"}},
{"type": "text", "text": "<image>\nDocument Parsing:"}, ], }],
"add_generation_prompt": True,
"temperature": 0, "top_p": 0.8, "top_k":20, "repetition_penalty": 1.0, "max_tokens": 8192, "skip_special_tokens": False}
# 3.将字典转换为 JSON 字符串
json_payload = json.dumps(data)
# 4.发送 POST 请求
headers = {'Content-Type': 'application/json'}
response = requests.post(url, data=json_payload, headers=headers)
result = response.json().get("choices", [])[0].get("message", []).get("content", [])
print(result)
模型的尺寸为1B。使用中发现每一次请求的输出token只有20token,性能较差,而显卡使用率只在0-10之间波动。
请求日志如下: