Skip to content

Commit 2f090f1

Browse files
ywang96hmellor
andauthored
Update _posts/2025-10-29-run-multimodal-reasoning-agents-nvidia-nemotron.md
Co-authored-by: Harry Mellor <[email protected]> Signed-off-by: Roger Wang <[email protected]>
1 parent 05d18cc commit 2f090f1

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

_posts/2025-10-29-run-multimodal-reasoning-agents-nvidia-nemotron.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ Figure 2: Accuracy trend of the Nemotron Nano 2 VL model across various token-dr
4242
* Architecture:
4343
* [CRADIOH-V2](https://huggingface.co/nvidia/C-RADIOv2-H) based Vision Encoder
4444
* Efficient video sampling as token compression module
45-
* Hybrid Transformer-Mamba Architecture- [Nemotron Nano 2 LLM](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2) backbone with reasoning.
45+
* Hybrid Transformer-Mamba Architecture - [Nemotron Nano 2 LLM](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2) backbone with reasoning.
4646
* Accuracy:
4747
* Leading accuracy on OCRBench v2
4848
* 74 on average score (compared to 64.2 with current top VL model) on the following benchmarks: MMMU, MathVista, AI2D, OCRBench, OCRBench-v2, OCR-Reasoning, ChartQA, DocVQA, and Video-MME

0 commit comments

Comments
 (0)