Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Usage]: Request to include vllm==0.6.2 for cuda 11.8 #10319

Open
1 task done
amew0 opened this issue Nov 14, 2024 · 0 comments
Open
1 task done

[Usage]: Request to include vllm==0.6.2 for cuda 11.8 #10319

amew0 opened this issue Nov 14, 2024 · 0 comments
Labels
usage How to use vllm

Comments

@amew0
Copy link

amew0 commented Nov 14, 2024

Your current environment

The output of `python collect_env.py`:
Collecting environment information...
PyTorch version: 2.4.0+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Rocky Linux release 8.6 (Green Obsidian) (x86_64)
GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-10)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.28

Python version: 3.10.15 (main, Oct  3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-372.9.1.el8.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-PCIE-32GB
GPU 1: Tesla V100-PCIE-32GB

Nvidia driver version: 515.105.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              52
On-line CPU(s) list: 0-51
Thread(s) per core:  1
Core(s) per socket:  26
Socket(s):           2
NUMA node(s):        2
Vendor ID:           GenuineIntel
CPU family:          6
Model:               85
Model name:          Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
Stepping:            7
CPU MHz:             4000.000
CPU max MHz:         4000.0000
CPU min MHz:         1000.0000
BogoMIPS:            4200.00
Virtualization:      VT-x
L1d cache:           32K
L1i cache:           32K
L2 cache:            1024K
L3 cache:            36608K
NUMA node0 CPU(s):   0-25
NUMA node1 CPU(s):   26-51
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu11==11.11.3.6
[pip3] nvidia-cuda-cupti-cu11==11.8.87
[pip3] nvidia-cuda-nvrtc-cu11==11.8.89
[pip3] nvidia-cuda-runtime-cu11==11.8.89
[pip3] nvidia-cudnn-cu11==9.1.0.70
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-curand-cu11==10.3.0.86
[pip3] nvidia-cusolver-cu11==11.4.1.48
[pip3] nvidia-cusparse-cu11==11.7.5.86
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu11==2.20.5
[pip3] nvidia-nvtx-cu11==11.8.86
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0+cu118
[pip3] torchvision==0.19.0+cu118
[pip3] transformers==4.46.2
[pip3] triton==3.0.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu11        11.11.3.6                pypi_0    pypi
[conda] nvidia-cuda-cupti-cu11    11.8.87                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu11    11.8.89                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu11  11.8.89                  pypi_0    pypi
[conda] nvidia-cudnn-cu11         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu11         10.9.0.58                pypi_0    pypi
[conda] nvidia-curand-cu11        10.3.0.86                pypi_0    pypi
[conda] nvidia-cusolver-cu11      11.4.1.48                pypi_0    pypi
[conda] nvidia-cusparse-cu11      11.7.5.86                pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu11          2.20.5                   pypi_0    pypi
[conda] nvidia-nvtx-cu11          11.8.86                  pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.4.0+cu118              pypi_0    pypi
[conda] torchvision               0.19.0+cu118             pypi_0    pypi
[conda] transformers              4.46.2                   pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    NIC0    CPU Affinity    NUMA Affinity
GPU0     X      SYS     SYS     23-25   0
GPU1    SYS      X      NODE    26-42   1
NIC0    SYS     NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

LD_LIBRARY_PATH=<HIDDEN>
CUDA_MODULE_LOADING=LAZY

How would you like to use vllm

I was able to install vllm==0.6.1.post1 via

# Install vLLM with CUDA 11.8.
export VLLM_VERSION=0.6.1.post1
export PYTHON_VERSION=310
pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118

But I wanted to use models with architecture: LlavaOnevisionForConditionalGeneration which are added in vllm==0.6.2 but the .whl files support for cuda 11.8 which is the latest my HW can support are available for upto 0.6.1.post2

And hence would like to know if vllm==0.6.2+cu118 will be added soon.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@amew0 amew0 added the usage How to use vllm label Nov 14, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
usage How to use vllm
Projects
None yet
Development

No branches or pull requests

1 participant