-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplda.py
414 lines (357 loc) · 15.2 KB
/
plda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import scipy
import numpy as np
import math
M_LOG_2PI = 1.8378770664093454835606594728112
class Pldaconfig(object):
"""
docstring here
:param object:
"""
def __init__(self, normalize_length=True, simple_length_norm=False):
self.normalize_length = normalize_length
self.simple_length_norm = simple_length_norm
class ClassInfo(object):
"""
记录每个说话人的信息
weight: 数组,表示权重
num_example: 语句数
mean: 均值
"""
def __init__(self, weight=0, num_example=0, mean=0):
self.weight = weight
self.num_example = num_example
self.mean = mean
class PldaStats(object):
"""
用于记录PLDA模型信息的类
Add_sample: 添加类
is_sorted: 判断是否排好序
sorted: 用于svd后排序
"""
def __init__(self, dim):
self.dim_ = dim
self.num_example = 0
self.num_classes = 0
self.class_weight = 0
self.example_weight = 0
self.sum = np.zeros(dim)
self.offset_scatter= np.zeros([dim, dim])
self.classinfo = list()
def add_samples(self, weight, group):
# Each row represent an utts of the same speaker.
n = group.shape[-1]
mean = np.mean(group, axis=0)
self.offset_scatter += weight * group.T * group
self.offset_scatter += -n * weight * mean * mean.T
self.classinfo.append(ClassInfo(weight, n, mean))
self.num_example += n
self.num_classes += 1
self.class_weight += weight
self.example_weight += weight * n
self.sum += weight * mean
@property
def is_sorted(self):
for i in range(self.num_classes):
if self.classinfo[i].num_example <= self.classinfo[i].num_classes:
return False
return True
def sort(self):
for i in range(self.num_classes) - 1:
j = i
while j < range(self.num_classes) - 1:
if self.classinfo[j].num_example < self.classinfo[j+1].num_example:
tmp = self.classinfo[j]
self.classinfo[j] = self.classinfo[j+1]
self.classinfo[j+1] = tmp
return
class PLDA(object):
"""
用于PLDA计算的类:
transform_ivector: 对数据进行转换
log_likelihood_ratio: 对已经注册的语句与待测试的数据进行对数似然概率计算
smooth_within_class_covariance: 类内方差平滑
apply_transform: 对输入进行变换
"""
def __init__(self):
self.mean = 0
self.transform = 0
self.psi = 0
self.offset = 0
self.dim = 0
def transform_ivector(self, config, ivector, num_example):
self.dim = ivector.shape[-1]
transformed_ivec = self.offset
transformed_ivec = 1.0 * self.transform * ivector + 1.0 * self.transform
if(config.simple_length_norm):
normalization_factor = math.sqrt(self.dim) / np.linalg.norm(transformed_ivec)
else:
normalization_factor = self.get_normalization_factor(transformed_ivec,
num_example)
if(config.normalize_length):
transformed_ivec = normalization_factor * transformed_ivec
return transformed_ivec
def log_likelihood_ratio(self, transform_train_ivector, num_utts,
transform_test_ivector):
self.dim = transform_train_ivector.shape[-1]
mean = np.zeros(self.dim)
variance = np.zeros(self.dim)
for i in range(self.dim):
mean[i] = num_utts * self.psi[i] / (num_utts * self.psi[i] + 1.0)*transform_train_ivector[i]
variance[i] = 1.0 + self.psi[i] / (num_utts * self.psi[i] + 1.0)
#
logdet = np.sum(np.log(variance))
sqdiff = transform_test_ivector - mean
sqdiff = np.power(sqdiff, np.full(sqdiff.shape, 2.0))
variance = np.reciprocal(variance)
loglike_given_class = -0.5 * (logdet + M_LOG_2PI * self.dim + np.dot(sqdiff, variance))
#
sqdiff = transform_test_ivector
sqdiff = np.power(sqdiff, np.full(sqdiff.shape, 2.0))
variance = self.psi + 1.0
logdet = np.sum(np.log(variance))
variance = np.reciprocal(variance)
loglike_without_class = -0.5 * (logdet + M_LOG_2PI * self.dim + np.dot(sqdiff, variance))
loglike_ratio = loglike_given_class - loglike_without_class
return loglike_ratio
def smooth_within_class_covariance(self, smoothing_factor):
within_class_covar = np.ones(self.dim)
smooth = np.full(self.dim,
smoothing_factor*within_class_covar*self.psi.T)
within_class_covar = np.add(within_class_covar,
smooth)
self.psi = np.divide(self.psi, within_class_covar)
within_class_covar = np.power(within_class_covar,
np.full(within_class_covar.shape, -0.5))
self.transform = np.diag(within_class_covar) * self.transform
self.compute_derived_vars()
# The method which needn't to use EM algorithm and calc the closed-form
# answer directly
def apply_transform(self, in_transform):
mean_new = np.zeros(in_transform.shape[0])
mean_new = in_transform * self.mean
self.mean = mean_new
self.mean = self.mean[0:in_transform.shape[0]+1]
between_var = np.zeros([in_transform.shape[1], in_transform.shape[1]])
within_var = np.zeros([in_transform.shape[1], in_transform.shape[1]])
psi_mat = np.zeros([in_transform.shape[1], in_transform.shape[1]])
between_var_new = np.zeros([in_transform.shape[1], in_transform.shape[1]])
within_var_new = np.zeros([in_transform.shape[1], in_transform.shape[1]])
transform_invert = np.invert(self.transform)
psi_mat = np.add(psi_mat, np.diag(self.psi))
within_var = 1.0 * transform_invert * transform_invert.T
between_var = 1.0 * transform_invert * psi_mat * transform_invert.T
between_var_new = 1.0 * in_transform * between_var * in_transform.T
within_var_new = 1.0 * in_transform * within_var * in_transform.T
transform1 = compute_normalizing_transform(within_var_new)
between_var_proj = 1.0 * transform1 * between_var_new * transform1.T
s, U = scipy.linalg.eig(between_var_proj)
s[s < 0] = 0
U[U < 0] = 0
s = np.sort(s)
U = np.sort(U)
self.transform = 1.0 * U * transform1 * U.T
self.psi = s
self.compute_derived_vars()
def compute_derived_vars(self):
self.offset = np.zeros(self.dim)
self.offset = -1.0 * self.transform * self.mean
return self.offset
def get_normalization_factor(self, transform_ivector, num_example):
transform_ivector_sq = transform_ivector
transform_ivector_sq = np.power(transform_ivector,
np.full(transform_ivector_sq.shape, 2.0))
inv_covar = self.psi
inv_covar = np.add(inv_covar,
np.full(inv_covar.shape, 1.0/num_example))
inv_covar = np.reciprocal(inv_covar)
dot_prob = inv_covar * transform_ivector_sq.T
return dot_prob
class PldaEstimationConfig(object):
"""
设置最大步长
"""
def __init__(self, num_em_iters=10):
self.num_em_iters = num_em_iters
class PldaEstimation(object):
"""
EM迭代的类,输入为PLDAstats, 使用estimate函数训练,get_output获得PLDA模型
"""
def __init__(self, Pldastats):
self.stats = Pldastats
self.dim = Pldastats.dim
self.between_var = np.zeros(Pldastats.dim)
self.between_var_stats = np.zeros(Pldastats.dim)
self.between_var_count = 0
self.within_var = np.zeros(Pldastats.dim)
self.within_var_stats = np.zeros(Pldastats.dim)
self.within_var_count = 0
def estimate(self, config):
for i in range(config.num_em_iters):
print("Plda estimation %d of %d" % i, config.num_em_iters)
self.estimate_one_iter()
def compute_object_function_part1(self):
within_class_count = self.stats.example_weight - self.stats.class_weight
inv_within_var = self.within_var
inv_within_var = np.invert(inv_within_var)
_, within_logdet = np.linalg.slogdet(inv_within_var)
objf = -0.5 * (within_class_count * (within_logdet + M_LOG_2PI * self.dim)
+ np.trace(inv_within_var, self.stats.offset))
return objf
def compute_object_function_part2(self):
tot_objf = 0.0
n = -1
for i in range(np.array(self.stats.classinfo).shape[0]):
info = self.stats.classinfo[i]
if info.num_example:
combined_inv_var = self.between_var
combined_inv_var += (1.0 / n) * self.within_var
_, combined_var_logdet = np.linalg.slogdet(np.invert(combined_inv_var))
combined_inv_var = np.invert(combined_inv_var)
mean = info.mean
mean += -1.0/self.stats.class_weight * self.stats.sum
tot_objf += info.weight * -0.5 * (combined_var_logdet + M_LOG_2PI * self.dim
+ mean.T * combined_inv_var * mean)
def estimate_one_iter(self):
self.reset_per_iter_stats()
self.get_stats_from_intraclass()
self.get_stats_from_class_mean()
self.estimate_from_stats()
def compute_object_function(self):
ans1 = self.compute_object_function_part1
ans2 = self.compute_object_function_part2
ans = ans1 + ans2
example_weights = self.stats.example_weight
#
normalized_ans = ans / example_weights
return normalized_ans
def init_parameters(self):
self.within_var = np.zeros(self.dim)
self.between_var = np.zeros(self.dim)
def reset_per_iter_stats(self):
self.within_var_stats = np.zeros(self.stats.dim)
self.within_var_count = 0
self.between_var_stat = np.zeros(self.stats.dim)
self.between_var_count = 0
def get_stats_from_intraclass(self):
self.within_var_stats += self.stats.offset_scatter
self.within_var_count += self.stats.example_weight - self.stats.class_weight
def get_stats_from_class_mean(self):
between_var_inv = np.invert(self.between_var)
within_var_inv = np.invert(self.within_var)
mix_var = np.zeros(self.dim)
for i in range(self.stats.num_classes):
info = self.stats.classinfo[i]
weight = info.weight
if info.num_example:
n = info.num_example
mix_var = between_var_inv + n * within_var_inv
m = info.mean - (self.stats.sum / self.stats.class_weight)
temp = n * within_var_inv * m
w = mix_var * temp
m_w = m - w
self.between_var_stats += weight * mix_var
self.between_var_stats += weight * np.square(w)
self.between_var_count += weight
self.within_var_stats += weight * n * mix_var
self.within_var_stats += weight * n * np.square(m_w)
self.within_var_count += weight
def estimate_from_stats(self):
self.within_var = (1.0 / self.within_var_count) * self.within_var_stats
self.between_var = (1.0 / self.between_var_count) * self.between_var_stat
def get_output(self):
Plda_output = PLDA()
Plda_output.mean = (1.0 / self.stats.class_weight) * self.stats.mean
transform1 = compute_normalizing_transform(self.within_var)
between_var_proj = transform1 * self.between_var * transform1.T
s, U = np.linalg.eigh(between_var_proj)
sort_svd(s, U)
Plda_output.transform = U.T
Plda_output.psi = s
#
# tmp_within = Plda_output.transform * self.within_var * Plda_output.transform.T
#TODO:Assert isunit
#
# tmp_between = Plda_output.transform * self.between_var * Plda_output.transform.T
Plda_output.compute_derived_vars()
return Plda_output
class PldaUnsupervisedAdaptorConfig(object):
"""
自适应的参数
"""
def __init__(self,
mean_diff_scale=1.0,
within_covar_scale=0.3,
between_covar_scale=0.7):
self.mean_diff_scale = mean_diff_scale
self.within_covar_scale = within_covar_scale
self.between_covar_scale = between_covar_scale
class PldaUnsupervisedAdaptor(object):
"""
通过Add_stats将新的数据添加进来,通过update_plda进行更新
"""
def __init__(self):
self.tot_weight = 0
self.mean_stats = np.zeros([])
self.variance_stats = np.zeros([])
def add_stats(self, weight, ivector):
if self.mean_stats.shape[0] == 0:
self.mean_stats = np.zeros(ivector.shape)
self.variance_stats = np.zeros(ivector.shape)
self.tot_weight += weight
self.mean_stats += weight * ivector
self.variance_stats += weight * np.square(ivector)
def update_plda(self, config, plda):
dim = self.mean_stats.shape[0]
#TODO:Add assert
mean = (1.0 / self.tot_weight) * self.mean_stats
variance = (1.0 / self.tot_weight) * self.variance_stats - np.square(mean)
plda.mean = mean
transform_mod = plda.transform
for i in range(dim):
transform_mod[i] *= 1.0 / math.sqrt(1.0 + plda.psi[i])
variance_proj = transform_mod * variance * transform_mod.T
s, P = np.linalg.eigh(variance_proj)
sort_svd(s, P)
W = np.zeros([dim, dim])
B = np.zeros([dim, dim])
for i in range(dim):
W[i][i] = 1.0 / (1.0 + plda.psi[i])
B[i][i] = plda.psi[i] / (1.0 + plda.psi[i])
Wproj2 = P.T * W * P
Bproj2 = P.T * B * P
Ptrans = P.T
Wproj2mod = Wproj2
Bproj2mod = Bproj2
for i in range(dim):
if s[i] > 1.0:
excess_eig = s[i] - 1.0
excess_within_covar = excess_eig * config.within_covar_scale
excess_between_covar = excess_eig * config.between_covar_scale
Wproj2mod[i][i] += excess_within_covar
Bproj2mod[i][i] += excess_between_covar
combined_trans_inv = np.invert(Ptrans * transform_mod)
Wmod = combined_trans_inv * Wproj2mod * combined_trans_inv.T
Bmod = combined_trans_inv * Bproj2mod * combined_trans_inv.T
C_inv = np.invert(np.linalg.cholesky(Wmod))
Bmod_proj = C_inv * Bmod * C_inv.T
psi_new, Q = np.linalg.eigh(Bmod_proj)
sort_svd(psi_new, Q)
final_transform = Q.T * C_inv
plda.transform = final_transform
plda.psi = psi_new
def compute_normalizing_transform(covar):
c = np.linalg.cholesky(covar)
c = np.invert(c)
return c
def sort_svd(s, d):
for i in len(s)-1:
j = i
while j<len(s)-1:
if s[j] < s[j+1]:
tmp = s[j]
s[j] = s[j+1]
s[j+1] = tmp
tmp = d[j]
d[j] = d[j+1]
d[j+1] = tmp
return s, d