forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_and_evaluate.py
227 lines (195 loc) · 6.8 KB
/
test_and_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import six
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
from utils.util import print_arguments, mkdir
try:
import cPickle as pickle #python 2
except ImportError as e:
import pickle #python 3
from model import Net
#yapf: disable
def parse_args():
parser = argparse.ArgumentParser("Test for DAM.")
parser.add_argument(
'--batch_size',
type=int,
default=256,
help='Batch size for training. (default: %(default)d)')
parser.add_argument(
'--num_scan_data',
type=int,
default=2,
help='Number of pass for training. (default: %(default)d)')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help='Learning rate used to train. (default: %(default)f)')
parser.add_argument(
'--data_path',
type=str,
default="data/ubuntu/data_small.pkl",
help='Path to training data. (default: %(default)s)')
parser.add_argument(
'--save_path',
type=str,
default="./",
help='Path to save score and result files. (default: %(default)s)')
parser.add_argument(
'--model_path',
type=str,
default="saved_models/step_1000",
help='Path to load well-trained models. (default: %(default)s)')
parser.add_argument(
'--use_cuda',
action='store_true',
help='If set, use cuda for training.')
parser.add_argument(
'--ext_eval',
action='store_true',
help='If set, use MAP, MRR ect for evaluation.')
parser.add_argument(
'--max_turn_num',
type=int,
default=9,
help='Maximum number of utterances in context.')
parser.add_argument(
'--max_turn_len',
type=int,
default=50,
help='Maximum length of setences in turns.')
parser.add_argument(
'--word_emb_init',
type=str,
default=None,
help='Path to the initial word embedding.')
parser.add_argument(
'--vocab_size',
type=int,
default=434512,
help='The size of vocabulary.')
parser.add_argument(
'--emb_size',
type=int,
default=200,
help='The dimension of word embedding.')
parser.add_argument(
'--_EOS_',
type=int,
default=28270,
help='The id for end of sentence in vocabulary.')
parser.add_argument(
'--stack_num',
type=int,
default=5,
help='The number of stacked attentive modules in network.')
parser.add_argument(
'--channel1_num',
type=int,
default=32,
help="The channels' number of the 1st conv3d layer's output.")
parser.add_argument(
'--channel2_num',
type=int,
default=16,
help="The channels' number of the 2nd conv3d layer's output.")
args = parser.parse_args()
return args
#yapf: enable
def test(args):
if not os.path.exists(args.save_path):
mkdir(args.save_path)
if not os.path.exists(args.model_path):
raise ValueError("Invalid model init path %s" % args.model_path)
# data data_config
data_conf = {
"batch_size": args.batch_size,
"max_turn_num": args.max_turn_num,
"max_turn_len": args.max_turn_len,
"_EOS_": args._EOS_,
}
dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
args.emb_size, args.stack_num, args.channel1_num,
args.channel2_num)
dam.create_data_layers()
loss, logits = dam.create_network()
loss.persistable = True
logits.persistable = True
# gradient clipping
fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
max=1.0, min=-1.0))
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(
learning_rate=fluid.layers.exponential_decay(
learning_rate=args.learning_rate,
decay_steps=400,
decay_rate=0.9,
staircase=True))
optimizer.minimize(loss)
fluid.memory_optimize(fluid.default_main_program())
if args.use_cuda:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = multiprocessing.cpu_count()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fluid.io.load_persistables(exe, args.model_path)
test_exe = fluid.ParallelExecutor(
use_cuda=args.use_cuda, main_program=test_program)
print("start loading data ...")
with open(args.data_path, 'rb') as f:
if six.PY2:
train_data, val_data, test_data = pickle.load(f)
else:
train_data, val_data, test_data = pickle.load(f, encoding="bytes")
print("finish loading data ...")
if args.ext_eval:
import utils.douban_evaluation as eva
eval_metrics = ["MAP", "MRR", "P@1", "R_{10}@1", "R_{10}@2", "R_{10}@5"]
else:
import utils.evaluation as eva
eval_metrics = ["R_2@1", "R_{10}@1", "R_{10}@2", "R_{10}@5"]
test_batches = reader.build_batches(test_data, data_conf)
test_batch_num = len(test_batches["response"])
print("test batch num: %d" % test_batch_num)
print("begin inference ...")
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
score_path = os.path.join(args.save_path, 'score.txt')
score_file = open(score_path, 'w')
for it in six.moves.xrange(test_batch_num // dev_count):
feed_list = []
for dev in six.moves.xrange(dev_count):
index = it * dev_count + dev
batch_data = reader.make_one_batch_input(test_batches, index)
feed_dict = dict(zip(dam.get_feed_names(), batch_data))
feed_list.append(feed_dict)
predicts = test_exe.run(feed=feed_list, fetch_list=[logits.name])
scores = np.array(predicts[0])
print("step = %d" % it)
for dev in six.moves.xrange(dev_count):
index = it * dev_count + dev
for i in six.moves.xrange(args.batch_size):
score_file.write(
str(scores[args.batch_size * dev + i][0]) + '\t' + str(
test_batches["label"][index][i]) + '\n')
score_file.close()
#write evaluation result
result = eva.evaluate(score_path)
result_file_path = os.path.join(args.save_path, 'result.txt')
with open(result_file_path, 'w') as out_file:
for metric, p_at in zip(eval_metrics, result):
out_file.write(metric + ": " + str(p_at) + '\n')
print('finish test')
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
test(args)