forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnets.py
122 lines (103 loc) · 4.6 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
import paddle.fluid.layers.io as io
class BowEncoder(object):
""" bow-encoder """
def __init__(self):
self.param_name = ""
def forward(self, emb):
return nn.sequence_pool(input=emb, pool_type='sum')
class GrnnEncoder(object):
""" grnn-encoder """
def __init__(self, param_name="grnn", hidden_size=128):
self.param_name = param_name
self.hidden_size = hidden_size
def forward(self, emb):
fc0 = nn.fc(input=emb,
size=self.hidden_size * 3,
param_attr=self.param_name + "_fc.w",
bias_attr=False)
gru_h = nn.dynamic_gru(
input=fc0,
size=self.hidden_size,
is_reverse=False,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
return nn.sequence_pool(input=gru_h, pool_type='max')
class PairwiseHingeLoss(object):
def __init__(self, margin=0.8):
self.margin = margin
def forward(self, pos, neg):
loss_part1 = nn.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
pos)
loss_part2 = nn.elementwise_add(loss_part1, neg)
loss_part3 = nn.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
return loss_part3
class SequenceSemanticRetrieval(object):
""" sequence semantic retrieval model """
def __init__(self, embedding_size, embedding_dim, hidden_size):
self.embedding_size = embedding_size
self.embedding_dim = embedding_dim
self.emb_shape = [self.embedding_size, self.embedding_dim]
self.hidden_size = hidden_size
self.user_encoder = GrnnEncoder(hidden_size=hidden_size)
self.item_encoder = BowEncoder()
self.pairwise_hinge_loss = PairwiseHingeLoss()
def get_correct(self, x, y):
less = tensor.cast(cf.less_than(x, y), dtype='float32')
correct = nn.reduce_sum(less)
return correct
def train(self):
user_data = io.data(name="user", shape=[1], dtype="int64", lod_level=1)
pos_item_data = io.data(
name="p_item", shape=[1], dtype="int64", lod_level=1)
neg_item_data = io.data(
name="n_item", shape=[1], dtype="int64", lod_level=1)
user_emb = nn.embedding(
input=user_data, size=self.emb_shape, param_attr="emb.item")
pos_item_emb = nn.embedding(
input=pos_item_data, size=self.emb_shape, param_attr="emb.item")
neg_item_emb = nn.embedding(
input=neg_item_data, size=self.emb_shape, param_attr="emb.item")
user_enc = self.user_encoder.forward(user_emb)
pos_item_enc = self.item_encoder.forward(pos_item_emb)
neg_item_enc = self.item_encoder.forward(neg_item_emb)
user_hid = nn.fc(input=user_enc,
size=self.hidden_size,
param_attr='user.w',
bias_attr="user.b")
pos_item_hid = nn.fc(input=pos_item_enc,
size=self.hidden_size,
param_attr='item.w',
bias_attr="item.b")
neg_item_hid = nn.fc(input=neg_item_enc,
size=self.hidden_size,
param_attr='item.w',
bias_attr="item.b")
cos_pos = nn.cos_sim(user_hid, pos_item_hid)
cos_neg = nn.cos_sim(user_hid, neg_item_hid)
hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
avg_cost = nn.mean(hinge_loss)
correct = self.get_correct(cos_neg, cos_pos)
return [user_data, pos_item_data,
neg_item_data], cos_pos, avg_cost, correct