|
| 1 | +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | +#include <string> |
| 15 | +#include <vector> |
| 16 | + |
| 17 | +#include "fusion_force_decoding_op.h" |
| 18 | +#include "pd_traits.h" |
| 19 | + |
| 20 | + |
| 21 | +std::vector<paddle::Tensor> DecodingForward( |
| 22 | + const paddle::Tensor& input, |
| 23 | + const paddle::Tensor& mem_seq_len, |
| 24 | + const paddle::Tensor& word_embedding, |
| 25 | + const std::vector<paddle::Tensor>& self_ln_weight, |
| 26 | + const std::vector<paddle::Tensor>& self_ln_bias, |
| 27 | + const std::vector<paddle::Tensor>& self_q_weight, |
| 28 | + const std::vector<paddle::Tensor>& self_q_bias, |
| 29 | + const std::vector<paddle::Tensor>& self_k_weight, |
| 30 | + const std::vector<paddle::Tensor>& self_k_bias, |
| 31 | + const std::vector<paddle::Tensor>& self_v_weight, |
| 32 | + const std::vector<paddle::Tensor>& self_v_bias, |
| 33 | + const std::vector<paddle::Tensor>& self_out_weight, |
| 34 | + const std::vector<paddle::Tensor>& self_out_bias, |
| 35 | + const std::vector<paddle::Tensor>& cross_ln_weight, |
| 36 | + const std::vector<paddle::Tensor>& cross_ln_bias, |
| 37 | + const std::vector<paddle::Tensor>& cross_q_weight, |
| 38 | + const std::vector<paddle::Tensor>& cross_q_bias, |
| 39 | + const std::vector<paddle::Tensor>& cross_k_weight, |
| 40 | + const std::vector<paddle::Tensor>& cross_k_bias, |
| 41 | + const std::vector<paddle::Tensor>& cross_v_weight, |
| 42 | + const std::vector<paddle::Tensor>& cross_v_bias, |
| 43 | + const std::vector<paddle::Tensor>& cross_out_weight, |
| 44 | + const std::vector<paddle::Tensor>& cross_out_bias, |
| 45 | + const std::vector<paddle::Tensor>& ffn_ln_weight, |
| 46 | + const std::vector<paddle::Tensor>& ffn_ln_bias, |
| 47 | + const std::vector<paddle::Tensor>& ffn_inter_weight, |
| 48 | + const std::vector<paddle::Tensor>& ffn_inter_bias, |
| 49 | + const std::vector<paddle::Tensor>& ffn_out_weight, |
| 50 | + const std::vector<paddle::Tensor>& ffn_out_bias, |
| 51 | + const paddle::Tensor& decoder_ln_weight, |
| 52 | + const paddle::Tensor& decoder_ln_bias, |
| 53 | + const paddle::Tensor& embedding_weight, |
| 54 | + const paddle::Tensor& embedding_bias, |
| 55 | + const paddle::Tensor& positional_embedding_weight, |
| 56 | + const paddle::Tensor& trg_word, |
| 57 | + const std::string& decoding_strategy, |
| 58 | + const int& beam_size, |
| 59 | + const int& topk, |
| 60 | + const float& topp, |
| 61 | + const int& n_head, |
| 62 | + const int& size_per_head, |
| 63 | + const int& num_layer, |
| 64 | + const int& bos_id, |
| 65 | + const int& eos_id, |
| 66 | + const int64_t& max_len, |
| 67 | + const float& beam_search_diversity_rate, |
| 68 | + const bool& rel_len, |
| 69 | + const float& alpha) { |
| 70 | + int batch_size = input.shape()[0]; |
| 71 | + int max_out_len = rel_len ? max_len + input.shape()[1] : max_len; |
| 72 | + |
| 73 | + std::vector<int64_t> output_dims; |
| 74 | + std::vector<int64_t> parent_ids_dims; |
| 75 | + std::vector<int64_t> sequence_length_dims({batch_size}); |
| 76 | + if (decoding_strategy == "beam_search") { |
| 77 | + batch_size /= beam_size; |
| 78 | + output_dims = {max_out_len, batch_size, beam_size}; |
| 79 | + parent_ids_dims = output_dims; |
| 80 | + } else if (decoding_strategy == "beam_search_v2") { |
| 81 | + // Use separated alive and finish beam queues to avoid the decrease of alive |
| 82 | + // beams. The outputs must include both the finish and alive to trace full |
| 83 | + // path. |
| 84 | + sequence_length_dims = {batch_size * 2}; |
| 85 | + batch_size /= beam_size; |
| 86 | + output_dims = {max_out_len, batch_size, beam_size * 2}; |
| 87 | + parent_ids_dims = output_dims; |
| 88 | + } else if (decoding_strategy == "sampling") { |
| 89 | + output_dims = {max_out_len, batch_size}; |
| 90 | + parent_ids_dims = {1}; |
| 91 | + } else { |
| 92 | + PD_THROW("Not supported decoding strategy. "); |
| 93 | + } |
| 94 | + |
| 95 | + if (input.place() == paddle::PlaceType::kGPU) { |
| 96 | + auto output_ids = paddle::Tensor(paddle::PlaceType::kGPU, output_dims); |
| 97 | + auto parent_ids = paddle::Tensor(paddle::PlaceType::kGPU, parent_ids_dims); |
| 98 | + auto sequence_length = |
| 99 | + paddle::Tensor(paddle::PlaceType::kGPU, sequence_length_dims); |
| 100 | + |
| 101 | + paddle::Tensor seq_len = paddle::Tensor(paddle::PlaceType::kGPU); |
| 102 | + |
| 103 | + if (mem_seq_len.place() != paddle::PlaceType::kGPU) { |
| 104 | + seq_len = mem_seq_len.copy_to<int>(paddle::PlaceType::kGPU); |
| 105 | + } else { |
| 106 | + seq_len = mem_seq_len; |
| 107 | + } |
| 108 | + |
| 109 | + return DecodingCUDAForward(input, |
| 110 | + seq_len, |
| 111 | + word_embedding, |
| 112 | + self_ln_weight, |
| 113 | + self_ln_bias, |
| 114 | + self_q_weight, |
| 115 | + self_q_bias, |
| 116 | + self_k_weight, |
| 117 | + self_k_bias, |
| 118 | + self_v_weight, |
| 119 | + self_v_bias, |
| 120 | + self_out_weight, |
| 121 | + self_out_bias, |
| 122 | + cross_ln_weight, |
| 123 | + cross_ln_bias, |
| 124 | + cross_q_weight, |
| 125 | + cross_q_bias, |
| 126 | + cross_k_weight, |
| 127 | + cross_k_bias, |
| 128 | + cross_v_weight, |
| 129 | + cross_v_bias, |
| 130 | + cross_out_weight, |
| 131 | + cross_out_bias, |
| 132 | + ffn_ln_weight, |
| 133 | + ffn_ln_bias, |
| 134 | + ffn_inter_weight, |
| 135 | + ffn_inter_bias, |
| 136 | + ffn_out_weight, |
| 137 | + ffn_out_bias, |
| 138 | + decoder_ln_weight, |
| 139 | + decoder_ln_bias, |
| 140 | + embedding_weight, |
| 141 | + embedding_bias, |
| 142 | + positional_embedding_weight, |
| 143 | + trg_word, |
| 144 | + output_ids, |
| 145 | + parent_ids, |
| 146 | + sequence_length, |
| 147 | + decoding_strategy, |
| 148 | + beam_size, |
| 149 | + topk, |
| 150 | + topp, |
| 151 | + n_head, |
| 152 | + size_per_head, |
| 153 | + num_layer, |
| 154 | + bos_id, |
| 155 | + eos_id, |
| 156 | + max_out_len, |
| 157 | + beam_search_diversity_rate, |
| 158 | + alpha); |
| 159 | + } else { |
| 160 | + PD_THROW("Not implemented place. Only GPU is supported. "); |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +std::vector<std::vector<int64_t>> DecodingInferShape( |
| 165 | + const std::vector<int64_t>& input_shape, |
| 166 | + const std::vector<int64_t>& mem_seq_len_shape, |
| 167 | + const std::vector<int64_t>& word_embedding_shape, |
| 168 | + const std::vector<std::vector<int64_t>>& self_ln_weight_shapes, |
| 169 | + const std::vector<std::vector<int64_t>>& self_ln_bias_shapes, |
| 170 | + const std::vector<std::vector<int64_t>>& self_q_weight_shapes, |
| 171 | + const std::vector<std::vector<int64_t>>& self_q_bias_shapes, |
| 172 | + const std::vector<std::vector<int64_t>>& self_k_weight_shapes, |
| 173 | + const std::vector<std::vector<int64_t>>& self_k_bias_shapes, |
| 174 | + const std::vector<std::vector<int64_t>>& self_v_weight_shapes, |
| 175 | + const std::vector<std::vector<int64_t>>& self_v_bias_shapes, |
| 176 | + const std::vector<std::vector<int64_t>>& self_out_weight_shapes, |
| 177 | + const std::vector<std::vector<int64_t>>& self_out_bias_shapes, |
| 178 | + const std::vector<std::vector<int64_t>>& cross_ln_weight_shapes, |
| 179 | + const std::vector<std::vector<int64_t>>& cross_ln_bias_shapes, |
| 180 | + const std::vector<std::vector<int64_t>>& cross_q_weight_shapes, |
| 181 | + const std::vector<std::vector<int64_t>>& cross_q_bias_shapes, |
| 182 | + const std::vector<std::vector<int64_t>>& cross_k_weight_shapes, |
| 183 | + const std::vector<std::vector<int64_t>>& cross_k_bias_shapes, |
| 184 | + const std::vector<std::vector<int64_t>>& cross_v_weight_shapes, |
| 185 | + const std::vector<std::vector<int64_t>>& cross_v_bias_shapes, |
| 186 | + const std::vector<std::vector<int64_t>>& cross_out_weight_shapes, |
| 187 | + const std::vector<std::vector<int64_t>>& cross_out_bias_shapes, |
| 188 | + const std::vector<std::vector<int64_t>>& ffn_ln_weight_shapes, |
| 189 | + const std::vector<std::vector<int64_t>>& ffn_ln_bias_shapes, |
| 190 | + const std::vector<std::vector<int64_t>>& ffn_inter_weight_shapes, |
| 191 | + const std::vector<std::vector<int64_t>>& ffn_inter_bias_shapes, |
| 192 | + const std::vector<std::vector<int64_t>>& ffn_out_weight_shapes, |
| 193 | + const std::vector<std::vector<int64_t>>& ffn_out_bias_shapes, |
| 194 | + const std::vector<int64_t>& decoder_ln_weight_shape, |
| 195 | + const std::vector<int64_t>& decoder_ln_bias_shape, |
| 196 | + const std::vector<int64_t>& embedding_weight_shape, |
| 197 | + const std::vector<int64_t>& embedding_bias_shape, |
| 198 | + const std::vector<int64_t>& positional_embedding_weight_shape, |
| 199 | + const std::vector<int64_t>& trg_word_shape, |
| 200 | + const std::string& decoding_strategy, |
| 201 | + const int& beam_size, |
| 202 | + const int& topk, |
| 203 | + const float& topp, |
| 204 | + const int& n_head, |
| 205 | + const int& size_per_head, |
| 206 | + const int& num_layer, |
| 207 | + const int& bos_id, |
| 208 | + const int& eos_id, |
| 209 | + const int64_t& max_len, |
| 210 | + const float& beam_search_diversity_rate, |
| 211 | + const bool& rel_len, |
| 212 | + const float& alpha) { |
| 213 | + int batch_size = input_shape[0]; |
| 214 | + |
| 215 | + std::vector<int64_t> output_dims; |
| 216 | + std::vector<int64_t> sequence_length_dims({batch_size}); |
| 217 | + if (decoding_strategy == "beam_search") { |
| 218 | + if (batch_size != -1) { |
| 219 | + batch_size /= beam_size; |
| 220 | + } |
| 221 | + output_dims = {max_len, batch_size, beam_size}; |
| 222 | + return {output_dims, output_dims, sequence_length_dims}; |
| 223 | + } else if (decoding_strategy == "beam_search_v2") { |
| 224 | + // Use separated alive and finish beam queues to avoid the decrease of alive |
| 225 | + // beams. The outputs must include both the finish and alive to trace full |
| 226 | + // path. |
| 227 | + sequence_length_dims = {batch_size * 2}; |
| 228 | + if (batch_size != -1) { |
| 229 | + batch_size /= beam_size; |
| 230 | + } |
| 231 | + output_dims = {max_len, batch_size, beam_size * 2}; |
| 232 | + return {output_dims, output_dims, sequence_length_dims}; |
| 233 | + } else if (decoding_strategy == "sampling") { |
| 234 | + output_dims = {max_len, batch_size}; |
| 235 | + return {output_dims, {1}, sequence_length_dims}; |
| 236 | + } else { |
| 237 | + PD_THROW("Not supported decoding strategy. "); |
| 238 | + } |
| 239 | +} |
| 240 | + |
| 241 | +std::vector<paddle::DataType> DecodingInferDtype( |
| 242 | + const paddle::DataType& input, |
| 243 | + const paddle::DataType& mem_seq_len, |
| 244 | + const paddle::DataType& word_embedding, |
| 245 | + const std::vector<paddle::DataType>& self_ln_weight, |
| 246 | + const std::vector<paddle::DataType>& self_ln_bias, |
| 247 | + const std::vector<paddle::DataType>& self_q_weight, |
| 248 | + const std::vector<paddle::DataType>& self_q_bias, |
| 249 | + const std::vector<paddle::DataType>& self_k_weight, |
| 250 | + const std::vector<paddle::DataType>& self_k_bias, |
| 251 | + const std::vector<paddle::DataType>& self_v_weight, |
| 252 | + const std::vector<paddle::DataType>& self_v_bias, |
| 253 | + const std::vector<paddle::DataType>& self_out_weight, |
| 254 | + const std::vector<paddle::DataType>& self_out_bias, |
| 255 | + const std::vector<paddle::DataType>& cross_ln_weight, |
| 256 | + const std::vector<paddle::DataType>& cross_ln_bias, |
| 257 | + const std::vector<paddle::DataType>& cross_q_weight, |
| 258 | + const std::vector<paddle::DataType>& cross_q_bias, |
| 259 | + const std::vector<paddle::DataType>& cross_k_weight, |
| 260 | + const std::vector<paddle::DataType>& cross_k_bias, |
| 261 | + const std::vector<paddle::DataType>& cross_v_weight, |
| 262 | + const std::vector<paddle::DataType>& cross_v_bias, |
| 263 | + const std::vector<paddle::DataType>& cross_out_weight, |
| 264 | + const std::vector<paddle::DataType>& cross_out_bias, |
| 265 | + const std::vector<paddle::DataType>& ffn_ln_weight, |
| 266 | + const std::vector<paddle::DataType>& ffn_ln_bias, |
| 267 | + const std::vector<paddle::DataType>& ffn_inter_weight, |
| 268 | + const std::vector<paddle::DataType>& ffn_inter_bias, |
| 269 | + const std::vector<paddle::DataType>& ffn_out_weight, |
| 270 | + const std::vector<paddle::DataType>& ffn_out_bias, |
| 271 | + const paddle::DataType& decoder_ln_weight, |
| 272 | + const paddle::DataType& decoder_ln_bias, |
| 273 | + const paddle::DataType& embedding_weight, |
| 274 | + const paddle::DataType& embedding_bias, |
| 275 | + const paddle::DataType& positional_embedding_weight, |
| 276 | + const paddle::DataType& trg_word) { |
| 277 | + return {paddle::DataType::INT32, |
| 278 | + paddle::DataType::INT32, |
| 279 | + paddle::DataType::INT32}; |
| 280 | +} |
| 281 | + |
| 282 | +PD_BUILD_OP(fusion_force_decoding) |
| 283 | + .Inputs({"Input", |
| 284 | + "MemSeqLen", |
| 285 | + "WordEmbedding", |
| 286 | + paddle::Vec("SelfLayernormWeight"), |
| 287 | + paddle::Vec("SelfLayernormBias"), |
| 288 | + paddle::Vec("SelfQueryWeight"), |
| 289 | + paddle::Vec("SelfQueryBias"), |
| 290 | + paddle::Vec("SelfKeyWeight"), |
| 291 | + paddle::Vec("SelfKeyBias"), |
| 292 | + paddle::Vec("SelfValueWeight"), |
| 293 | + paddle::Vec("SelfValueBias"), |
| 294 | + paddle::Vec("SelfOutWeight"), |
| 295 | + paddle::Vec("SelfOutBias"), |
| 296 | + paddle::Vec("CrossLayernormWeight"), |
| 297 | + paddle::Vec("CrossLayernormBias"), |
| 298 | + paddle::Vec("CrossQueryWeight"), |
| 299 | + paddle::Vec("CrossQueryBias"), |
| 300 | + paddle::Vec("CrossKeyWeight"), |
| 301 | + paddle::Vec("CrossKeyBias"), |
| 302 | + paddle::Vec("CrossValueWeight"), |
| 303 | + paddle::Vec("CrossValueBias"), |
| 304 | + paddle::Vec("CrossOutWeight"), |
| 305 | + paddle::Vec("CrossOutBias"), |
| 306 | + paddle::Vec("FFNLayernormWeight"), |
| 307 | + paddle::Vec("FFNLayernormBias"), |
| 308 | + paddle::Vec("FFNInterWeight"), |
| 309 | + paddle::Vec("FFNInterBias"), |
| 310 | + paddle::Vec("FFNOutWeight"), |
| 311 | + paddle::Vec("FFNOutBias"), |
| 312 | + "DecoderLayernormWeight", |
| 313 | + "DecoderLayernormBias", |
| 314 | + "EmbWeight", |
| 315 | + "EmbBias", |
| 316 | + "PositionEncEmb", |
| 317 | + "TrgWord"}) |
| 318 | + .Outputs({"OutputIds", "ParentIds", "SequenceLength"}) |
| 319 | + .Attrs({"decoding_strategy: std::string", |
| 320 | + "beam_size: int", |
| 321 | + "topk: int", |
| 322 | + "topp: float", |
| 323 | + "n_head: int", |
| 324 | + "size_per_head: int", |
| 325 | + "num_layer: int", |
| 326 | + "bos_id: int", |
| 327 | + "eos_id: int", |
| 328 | + "max_len: int64_t", |
| 329 | + "beam_search_diversity_rate: float", |
| 330 | + "rel_len: bool", |
| 331 | + "alpha: float"}) |
| 332 | + .SetKernelFn(PD_KERNEL(DecodingForward)) |
| 333 | + .SetInferShapeFn(PD_INFER_SHAPE(DecodingInferShape)) |
| 334 | + .SetInferDtypeFn(PD_INFER_DTYPE(DecodingInferDtype)); |
0 commit comments