forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
129 lines (114 loc) · 4.64 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import division
from __future__ import print_function
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
sys.path.append(
os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
import paddleslim
from paddleslim.common import get_logger
from paddleslim.analysis import dygraph_flops as flops
import paddle.vision.models as models
from utility import add_arguments, print_arguments
import paddle.vision.transforms as T
from paddle.static import InputSpec as Input
from imagenet import ImageNetDataset
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
from paddle.distributed import ParallelEnv
_logger = get_logger(__name__, level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 64 * 4, "Minibatch size.")
add_arg('model', str, "mobilenet_v1", "The target model.")
add_arg('data', str, "imagenet", "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period', int, 10, "Log period in batches.")
add_arg('test_period', int, 10, "Test period in epoches.")
add_arg('checkpoint', str, None, "The path of checkpoint which is used for eval.")
add_arg('pruned_ratio', float, None, "The ratios to be pruned.")
add_arg('use_gpu', bool, True, "Whether to GPUs.")
# yapf: enable
model_list = models.__all__
def get_pruned_params(args, model):
params = []
if args.model == "mobilenet_v1":
skip_vars = ['linear_0.b_0',
'conv2d_0.w_0'] # skip the first conv2d and last linear
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(
sublayer, paddle.nn.Conv2D
) and sublayer._groups == 1 and param.name not in skip_vars:
params.append(param.name)
elif args.model == "mobilenet_v2":
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(sublayer, paddle.nn.Conv2D):
params.append(param.name)
return params
elif args.model == "resnet34":
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(sublayer, paddle.nn.Conv2D):
params.append(param.name)
return params
else:
raise NotImplementedError(
"Current demo only support for mobilenet_v1, mobilenet_v2, resnet34")
return params
def eval(args):
paddle.set_device('gpu' if args.use_gpu else 'cpu')
test_reader = None
if args.data == "cifar10":
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
val_dataset = paddle.vision.datasets.Cifar10(
mode="test", backend="cv2", transform=transform)
class_dim = 10
image_shape = [3, 224, 224]
pretrain = False
elif args.data == "imagenet":
val_dataset = ImageNetDataset(
"data/ILSVRC2012",
mode='val',
image_size=224,
resize_short_size=256)
class_dim = 1000
image_shape = [3, 224, 224]
pretrain = True
else:
raise ValueError("{} is not supported.".format(args.data))
assert args.model in model_list, "{} is not in lists: {}".format(args.model,
model_list)
inputs = [Input([None] + image_shape, 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]
# model definition
net = models.__dict__[args.model](pretrained=pretrain,
num_classes=class_dim)
pruner = paddleslim.dygraph.L1NormFilterPruner(net, [1] + image_shape)
params = get_pruned_params(args, net)
ratios = {}
for param in params:
ratios[param] = args.pruned_ratio
print("ratios: {}".format(ratios))
pruner.prune_vars(ratios, [0])
model = paddle.Model(net, inputs, labels)
model.prepare(
None, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(topk=(1, 5)))
model.load(args.checkpoint)
model.evaluate(
eval_data=val_dataset,
batch_size=args.batch_size,
verbose=1,
num_workers=8)
def main():
args = parser.parse_args()
print_arguments(args)
eval(args)
if __name__ == '__main__':
main()