forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (170 loc) · 7.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import division
from __future__ import print_function
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
sys.path.append(
os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
import paddleslim
from paddleslim.common import get_logger
from paddleslim.analysis import dygraph_flops as flops
import paddle.vision.models as models
from utility import add_arguments, print_arguments
import paddle.vision.transforms as T
from paddle.static import InputSpec as Input
from imagenet import ImageNetDataset
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
from paddle.distributed import ParallelEnv
_logger = get_logger(__name__, level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 64 * 4, "Minibatch size.")
add_arg('model', str, "MobileNet", "The target model.")
add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.")
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.")
add_arg('num_epochs', int, 120, "The number of total epochs.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period', int, 10, "Log period in batches.")
add_arg('test_period', int, 10, "Test period in epoches.")
add_arg('model_path', str, "./models", "The path to save model.")
add_arg('pruned_ratio', float, None, "The ratios to be pruned.")
add_arg('criterion', str, "l1_norm", "The prune criterion to be used, support l1_norm and batch_norm_scale.")
add_arg('use_gpu', bool, True, "Whether to GPUs.")
add_arg('checkpoint', str, None, "The path of checkpoint which is used for resume training.")
# yapf: enable
model_list = models.__all__
def get_pruned_params(args, model):
params = []
if args.model == "mobilenet_v1":
skip_vars = ['linear_0.b_0',
'conv2d_0.w_0'] # skip the first conv2d and last linear
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(
sublayer, paddle.nn.Conv2D
) and sublayer._groups == 1 and param.name not in skip_vars:
params.append(param.name)
elif args.model == "mobilenet_v2":
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(sublayer, paddle.nn.Conv2D):
params.append(param.name)
return params
elif args.model == "resnet34":
for sublayer in model.sublayers():
for param in sublayer.parameters(include_sublayers=False):
if isinstance(sublayer, paddle.nn.Conv2D):
params.append(param.name)
return params
else:
raise NotImplementedError(
"Current demo only support for mobilenet_v1, mobilenet_v2, resnet34")
return params
def piecewise_decay(args, parameters, steps_per_epoch):
bd = [steps_per_epoch * e for e in args.step_epochs]
lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay),
parameters=parameters)
return optimizer
def cosine_decay(args, parameters, steps_per_epoch):
learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate=args.lr, T_max=args.num_epochs * steps_per_epoch)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay),
parameters=parameters)
return optimizer
def create_optimizer(args, parameters, steps_per_epoch):
if args.lr_strategy == "piecewise_decay":
return piecewise_decay(args, parameters, steps_per_epoch)
elif args.lr_strategy == "cosine_decay":
return cosine_decay(args, parameters, steps_per_epoch)
def compress(args):
paddle.set_device('gpu' if args.use_gpu else 'cpu')
train_reader = None
test_reader = None
if args.data == "cifar10":
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = paddle.vision.datasets.Cifar10(
mode="train", backend="cv2", transform=transform)
val_dataset = paddle.vision.datasets.Cifar10(
mode="test", backend="cv2", transform=transform)
class_dim = 10
image_shape = [3, 32, 32]
pretrain = False
elif args.data == "imagenet":
train_dataset = ImageNetDataset(
"data/ILSVRC2012",
mode='train',
image_size=224,
resize_short_size=256)
val_dataset = ImageNetDataset(
"data/ILSVRC2012",
mode='val',
image_size=224,
resize_short_size=256)
class_dim = 1000
image_shape = [3, 224, 224]
pretrain = True
else:
raise ValueError("{} is not supported.".format(args.data))
assert args.model in model_list, "{} is not in lists: {}".format(args.model,
model_list)
inputs = [Input([None] + image_shape, 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]
# model definition
net = models.__dict__[args.model](pretrained=pretrain,
num_classes=class_dim)
_logger.info("FLOPs before pruning: {}GFLOPs".format(
flops(net, [1] + image_shape) / 1000))
net.eval()
if args.criterion == 'fpgm':
pruner = paddleslim.dygraph.FPGMFilterPruner(net, [1] + image_shape)
elif args.criterion == 'l1_norm':
pruner = paddleslim.dygraph.L1NormFilterPruner(net, [1] + image_shape)
params = get_pruned_params(args, net)
ratios = {}
for param in params:
ratios[param] = args.pruned_ratio
plan = pruner.prune_vars(ratios, [0])
_logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
flops(net, [1] + image_shape) / 1000, plan.pruned_flops))
for param in net.parameters():
if "conv2d" in param.name:
print("{}\t{}".format(param.name, param.shape))
net.train()
model = paddle.Model(net, inputs, labels)
steps_per_epoch = int(np.ceil(len(train_dataset) * 1. / args.batch_size))
opt = create_optimizer(args, net.parameters(), steps_per_epoch)
model.prepare(
opt, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy(topk=(1, 5)))
if args.checkpoint is not None:
model.load(args.checkpoint)
model.fit(train_data=train_dataset,
eval_data=val_dataset,
epochs=args.num_epochs,
batch_size=args.batch_size // ParallelEnv().nranks,
verbose=1,
save_dir=args.model_path,
num_workers=8)
def main():
args = parser.parse_args()
print_arguments(args)
compress(args)
if __name__ == '__main__':
main()