|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Xbatcher Caching Feature \n", |
| 8 | + "\n", |
| 9 | + "This notebook demonstrates the new caching feature added to xbatcher's `BatchGenerator`. This feature allows you to cache batches, potentially improving performance for repeated access to the same batches. \n", |
| 10 | + "\n", |
| 11 | + "\n", |
| 12 | + "## Introduction\n", |
| 13 | + "\n", |
| 14 | + "The caching feature in xbatcher's `BatchGenerator` allows you to store generated batches in a cache, which can significantly speed up subsequent accesses to the same batches. This is particularly useful in scenarios where you need to iterate over the same dataset multiple times. \n", |
| 15 | + "\n", |
| 16 | + "\n", |
| 17 | + "The cache is pluggable, meaning you can use any dict-like object to store the cache. This flexibility allows for various storage backends, including local storage, distributed storage systems, or cloud storage solutions.\n", |
| 18 | + "\n", |
| 19 | + "## Installation \n", |
| 20 | + "\n", |
| 21 | + "To use the caching feature, you'll need to have xbatcher installed, along with zarr for serialization. If you haven't already, you can install these using pip:\n", |
| 22 | + "\n", |
| 23 | + "```bash\n", |
| 24 | + "python -m pip install xbatcher zarr\n", |
| 25 | + "```\n", |
| 26 | + "\n", |
| 27 | + "or \n", |
| 28 | + "\n", |
| 29 | + "using conda:\n", |
| 30 | + "\n", |
| 31 | + "```bash\n", |
| 32 | + "conda install -c conda-forge xbatcher zarr\n", |
| 33 | + "```\n" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "markdown", |
| 38 | + "metadata": {}, |
| 39 | + "source": [ |
| 40 | + "## Basic Usage \n", |
| 41 | + "\n", |
| 42 | + "Let's start with a basic example of how to use the caching feature:" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "import tempfile\n", |
| 52 | + "\n", |
| 53 | + "import xarray as xr\n", |
| 54 | + "import zarr\n", |
| 55 | + "\n", |
| 56 | + "import xbatcher" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "# create a cache using Zarr's DirectoryStore\n", |
| 66 | + "directory = f'{tempfile.mkdtemp()}/xbatcher-cache'\n", |
| 67 | + "print(directory)\n", |
| 68 | + "cache = zarr.storage.DirectoryStore(directory)" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "In this example, we're using a local directory to store the cache, but you could use any zarr-compatible store, such as S3, Redis, etc." |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "# load a sample dataset\n", |
| 85 | + "ds = xr.tutorial.open_dataset('air_temperature', chunks={})\n", |
| 86 | + "ds" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": null, |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [], |
| 94 | + "source": [ |
| 95 | + "# create a BatchGenerator with caching enabled\n", |
| 96 | + "gen = xbatcher.BatchGenerator(ds, input_dims={'lat': 10, 'lon': 10}, cache=cache)" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "markdown", |
| 101 | + "metadata": {}, |
| 102 | + "source": [ |
| 103 | + "### Performance Comparison\n", |
| 104 | + "\n", |
| 105 | + "\n", |
| 106 | + "Let's compare the performance with and without caching:\n" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [], |
| 114 | + "source": [ |
| 115 | + "import time\n", |
| 116 | + "\n", |
| 117 | + "\n", |
| 118 | + "def time_iteration(gen):\n", |
| 119 | + " start = time.time()\n", |
| 120 | + " for batch in gen:\n", |
| 121 | + " pass\n", |
| 122 | + " end = time.time()\n", |
| 123 | + " return end - start" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": null, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "directory = f'{tempfile.mkdtemp()}/xbatcher-cache'\n", |
| 133 | + "cache = zarr.storage.DirectoryStore(directory)\n", |
| 134 | + "\n", |
| 135 | + "# Without cache\n", |
| 136 | + "gen_no_cache = xbatcher.BatchGenerator(ds, input_dims={'lat': 10, 'lon': 10})\n", |
| 137 | + "time_no_cache = time_iteration(gen_no_cache)\n", |
| 138 | + "print(f'Time without cache: {time_no_cache:.2f} seconds')" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "# With cache\n", |
| 148 | + "gen_with_cache = xbatcher.BatchGenerator(\n", |
| 149 | + " ds, input_dims={'lat': 10, 'lon': 10}, cache=cache\n", |
| 150 | + ")\n", |
| 151 | + "time_first_run = time_iteration(gen_with_cache)\n", |
| 152 | + "print(f'Time with cache (first run): {time_first_run:.2f} seconds')\n", |
| 153 | + "\n", |
| 154 | + "\n", |
| 155 | + "time_second_run = time_iteration(gen_with_cache)\n", |
| 156 | + "print(f'Time with cache (second run): {time_second_run:.2f} seconds')" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "You should see that the second run with cache is significantly faster than both the first run and the run without cache." |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "## Advanced Usage \n", |
| 171 | + "\n", |
| 172 | + "### Custom Cache Preprocessing\n", |
| 173 | + "\n", |
| 174 | + "You can also specify a custom preprocessing function to be applied to batches before they are cached:\n" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "# create a cache using Zarr's DirectoryStore\n", |
| 184 | + "directory = f'{tempfile.mkdtemp()}/xbatcher-cache'\n", |
| 185 | + "cache = zarr.storage.DirectoryStore(directory)\n", |
| 186 | + "\n", |
| 187 | + "\n", |
| 188 | + "def preprocess_batch(batch):\n", |
| 189 | + " # example: add a new variable to each batch\n", |
| 190 | + " batch['new_var'] = batch['air'] * 2\n", |
| 191 | + " return batch\n", |
| 192 | + "\n", |
| 193 | + "\n", |
| 194 | + "gen_with_preprocess = xbatcher.BatchGenerator(\n", |
| 195 | + " ds,\n", |
| 196 | + " input_dims={'lat': 10, 'lon': 10},\n", |
| 197 | + " cache=cache,\n", |
| 198 | + " cache_preprocess=preprocess_batch,\n", |
| 199 | + ")\n", |
| 200 | + "\n", |
| 201 | + "# Now, each cached batch will include the 'new_var' variable\n", |
| 202 | + "for batch in gen_with_preprocess:\n", |
| 203 | + " print(batch)\n", |
| 204 | + " break" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "markdown", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "### Using Different Storage Backends\n", |
| 212 | + "\n", |
| 213 | + "While we've been using a local directory for caching, you can use any dict-like that is compatible with zarr. For example, you could use an S3 bucket as the cache storage backend:\n", |
| 214 | + "\n", |
| 215 | + "```python\n", |
| 216 | + "import s3fs\n", |
| 217 | + "import zarr \n", |
| 218 | + "\n", |
| 219 | + "# Set up S3 filesystem (you'll need appropriate credentials)\n", |
| 220 | + "s3 = s3fs.S3FileSystem(anon=False)\n", |
| 221 | + "store = s3.get_mapper('s3://my-bucket/my-cache.zarr')\n", |
| 222 | + "\n", |
| 223 | + "# Use this cache with BatchGenerator\n", |
| 224 | + "gen_s3 = xbatcher.BatchGenerator(ds, input_dims={'lat': 10, 'lon': 10}, cache=cache)\n", |
| 225 | + "```\n" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "metadata": {}, |
| 231 | + "source": [ |
| 232 | + "## Considerations and Best Practices \n", |
| 233 | + "\n", |
| 234 | + "- **Storage Space**: Be mindful of the storage space required for your cache, especially when working with large datasets.\n", |
| 235 | + "- **Cache Invalidation**: The current implementation doesn't handle cache invalidation. If your source data changes, you'll need to manually clear or update the cache.\n", |
| 236 | + "- **Performance Tradeoffs**: While caching can significantly speed up repeated access to the same data, the initial caching process may be slower than processing without a cache. Consider your use case to determine if caching is beneficial.\n", |
| 237 | + "- **Storage Backend**: Choose a storage backend that's appropriate for your use case. Local storage might be fastest for single-machine applications, while distributed or cloud storage might be necessary for cluster computing or cloud-based workflows.\n", |
| 238 | + "\n" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [] |
| 245 | + } |
| 246 | + ], |
| 247 | + "metadata": { |
| 248 | + "kernelspec": { |
| 249 | + "display_name": "Python 3 (ipykernel)", |
| 250 | + "language": "python", |
| 251 | + "name": "python3" |
| 252 | + }, |
| 253 | + "language_info": { |
| 254 | + "codemirror_mode": { |
| 255 | + "name": "ipython", |
| 256 | + "version": 3 |
| 257 | + }, |
| 258 | + "file_extension": ".py", |
| 259 | + "mimetype": "text/x-python", |
| 260 | + "name": "python", |
| 261 | + "nbconvert_exporter": "python", |
| 262 | + "pygments_lexer": "ipython3", |
| 263 | + "version": "3.11.9" |
| 264 | + } |
| 265 | + }, |
| 266 | + "nbformat": 4, |
| 267 | + "nbformat_minor": 4 |
| 268 | +} |
0 commit comments