-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
145 lines (113 loc) · 3.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from dataset import VOCDataset
from model import TuduiModel
from utils import get_transforms
from loss import DetectionLoss
from torch.utils.tensorboard import SummaryWriter
def train_one_epoch(model, dataloader, criterion, optimizer, device):
model.train()
total_loss = 0
for batch_idx, (images, targets) in enumerate(dataloader):
images, targets = images.to(device), targets.to(device)
# 前向传播
predictions = model(images)
# 计算损失
loss = criterion(predictions, targets)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if batch_idx % 10 == 0:
print(f"Batch {batch_idx}/{len(dataloader)}, Loss: {loss.item():.4f}")
return total_loss / len(dataloader)
def validate(model, dataloader, criterion, device):
model.eval()
total_loss = 0
with torch.no_grad():
for images, targets in dataloader:
images, targets = images.to(device), targets.to(device)
predictions = model(images)
loss = criterion(predictions, targets)
total_loss += loss.item()
return total_loss / len(dataloader)
def main():
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 超参数
LEARNING_RATE = 1e-4
BATCH_SIZE = 128
NUM_EPOCHS = 8000
# 数据集路径
train_img_dir = r"../dataset/VOCdevkit/VOC2007/JPEGImages"
train_label_dir = r"../dataset/VOCdevkit/VOC2007/Annotations"
val_img_dir = r"../dataset/VOCdevkit/VOC2007/JPEGImages"
val_label_dir = r"../dataset/VOCdevkit/VOC2007/Annotations"
# 创建数据集和数据加载器
train_dataset = VOCDataset(
image_folder=train_img_dir,
label_folder=train_label_dir,
transform=get_transforms(train=True)
)
val_dataset = VOCDataset(
image_folder=val_img_dir,
label_folder=val_label_dir,
transform=get_transforms(train=False)
)
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=32,
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=32,
pin_memory=True
)
# 创建模型
model = TuduiModel().to(device)
# 定义损失函数和优化器
criterion = DetectionLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
# 学习率调度器
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(
# optimizer,
# mode='min',
# factor=0.1,
# patience=5,
# verbose=True
# )
# Create TensorBoard writer
writer = SummaryWriter('runs/adam_128_1e4_8000')
# 训练循环
best_val_loss = float('inf')
for epoch in range(NUM_EPOCHS):
print(f"\nEpoch {epoch+1}/{NUM_EPOCHS}")
# 训练
train_loss = train_one_epoch(
model, train_loader, criterion, optimizer, device
)
# 验证
val_loss = validate(model, val_loader, criterion, device)
# Add TensorBoard logging
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Learning_rate', optimizer.param_groups[0]['lr'], epoch)
print(f"Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
# 学习率调整
# scheduler.step(val_loss)
# 保存最佳模型
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), 'best_model.pth')
print("Saved best model!")
# Close writer at the end
writer.close()
if __name__ == "__main__":
main()