forked from liucongg/ChatGLM-Finetuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetuning_lora_sft.py
201 lines (176 loc) · 8.06 KB
/
finetuning_lora_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding:utf-8 -*-
"""
文件说明:给予LoRA算法进行SFT
CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_lora_sft.py --num_train_epochs 5 --train_batch_size 2 --lora_r 8
CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_lora_sft.py --num_train_epochs 2 --train_batch_size 2 --lora_r 8 && shutdown now
CUDA_VISIBLE_DEVICES=0,1 deepspeed finetuning_lora_sft.py --num_train_epochs 2 --train_batch_size 2 --lora_r 8 && shutdown now
"""
from modeling_chatglm import ChatGLMForConditionalGeneration
from tokenization_chatglm import ChatGLMTokenizer
import torch
import deepspeed
import argparse
from torch.utils.data import RandomSampler, DataLoader
from data_set_sft import SFTDataSet, coll_fn
import os
import transformers
from shutil import copy
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, \
set_peft_model_state_dict
def print_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}")
def set_args():
parser = argparse.ArgumentParser()
# parser.add_argument('--train_path', default='/app/ChatGLM-Deepspeed-LoRA/data/test.json', type=str, help='')
parser.add_argument('--train_path', default='/app/ChatGLM-Deepspeed-LoRA/data/alpaca_gpt4_data_zh_zx.json', type=str, help='')
parser.add_argument('--model_dir', default="/root/autodl-tmp/chatglm-6b", type=str, help='')
parser.add_argument('--num_train_epochs', default=1, type=int, help='')
parser.add_argument('--train_batch_size', default=2, type=int, help='')
parser.add_argument('--gradient_accumulation_steps', default=1, type=int, help='')
parser.add_argument('--output_dir', default='/app/ChatGLM-Deepspeed-LoRA/output_dir_lora/0503-speed', type=str, help='')
parser.add_argument('--log_steps', type=int, default=10, help='')
parser.add_argument('--max_seq_length', type=int, default=512, help='')
parser.add_argument('--local_rank', type=int, default=0, help='')
parser.add_argument('--lora_r', type=int, default=8, help='')
# parser.add_argument('--master_port', type=int, default=6666, help='')
return parser.parse_args()
def main():
args = set_args()
model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir)
tokenizer = ChatGLMTokenizer.from_pretrained(args.model_dir)
config = transformers.AutoConfig.from_pretrained(args.model_dir,trust_remote_code=True)
# Lora_config = LoraConfig(
# task_type="CAUSAL_LM",
# inference_mode=False,
# r=args.lora_r,
# lora_alpha=32,
# lora_dropout=0.1,
# )
# Lora_config = LoraConfig(
# task_type="CAUSAL_LM",
# inference_mode=False,
# r=32,
# lora_alpha=32,
# lora_dropout=0.1,
# target_modules=["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"],
# )
Lora_config = LoraConfig(r=args.lora_r,
lora_alpha=32,
target_modules=["query_key_value"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
inference_mode=False,
)
model = get_peft_model(model, Lora_config)
model = model.cuda()
conf = {"train_micro_batch_size_per_gpu": args.train_batch_size,
"gradient_accumulation_steps": args.gradient_accumulation_steps,
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-5,
"betas": [
0.9,
0.95
],
"eps": 1e-8,
"weight_decay": 5e-4
}
},
"fp16": {
"enabled": True
},
"zero_optimization": {
"stage": 1,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"allgather_partitions": True,
"allgather_bucket_size": 2e8,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 2e8,
"contiguous_gradients": True
},
# "zero_optimization": {
# "stage": 2,
# "offload_optimizer": {
# "device": "cpu",
# "pin_memory": True
# },
# "allgather_partitions": True,
# "allgather_bucket_size": 2e8,
# "reduce_scatter": True,
# "reduce_bucket_size": 2e8,
# "overlap_comm": True,
# "contiguous_gradients": True
# },
# "zero_optimization": {
# "stage": 3,
# "contiguous_gradients": True,
# "stage3_max_live_parameters": 1e9,
# "stage3_max_reuse_distance": 1e9,
# "stage3_prefetch_bucket_size": 1e7,
# "stage3_param_persistence_threshold": 1e5,
# "reduce_bucket_size": 1e7,
# "sub_group_size": 1e9,
# "offload_optimizer": {
# "device": "cpu"
# },
# "offload_param": {
# "device": "cpu"
# }
# },
"steps_per_print": args.log_steps
}
print_trainable_parameters(model)
for name, param in model.named_parameters():
if param.requires_grad == True:
print(name)
train_dataset = SFTDataSet(args.train_path, tokenizer, config, args.max_seq_length)
train_dataloader = DataLoader(train_dataset,
batch_size=conf["train_micro_batch_size_per_gpu"],
sampler=RandomSampler(train_dataset),
collate_fn=coll_fn,
drop_last=True,
num_workers=0)
model_engine, optimizer, _, _ = deepspeed.initialize(config=conf,
model=model,
model_parameters=model.parameters())
model_engine.train()
global_step = 0
for i_epoch in range(args.num_train_epochs):
train_iter = iter(train_dataloader)
for step, batch in enumerate(train_iter):
input_ids = batch["input_ids"].cuda()
labels = batch["labels"].cuda()
outputs = model_engine.forward(input_ids=input_ids, labels=labels)
loss = outputs[0]
if conf["gradient_accumulation_steps"] > 1:
loss = loss / conf["gradient_accumulation_steps"]
model_engine.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if (step + 1) % conf["gradient_accumulation_steps"] == 0:
model_engine.step()
global_step += 1
if global_step % args.log_steps == 0:
print("loss:{}, global_step:{}".format(float(loss.item()), global_step))
save_dir = os.path.join(args.output_dir, f"global_step-{global_step}")
model_engine.save_pretrained(save_dir, overwrite_output_dir=True)
copy(os.path.join(args.model_dir, "tokenizer_config.json"), os.path.join(save_dir, "tokenizer_config.json"))
copy(os.path.join(args.model_dir, "ice_text.model"), os.path.join(save_dir, "ice_text.model"))
if __name__ == "__main__":
main()
# CUDA_VISIBLE_DEVICES=0 deepspeed --master_port 5555 finetuning_lora_sft.py