-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtest_pyarray.py
321 lines (265 loc) · 11.1 KB
/
test_pyarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
############################################################################
# Copyright (c) Wolf Vollprecht, Johan Mabille and Sylvain Corlay #
# Copyright (c) QuantStack #
# #
# Distributed under the terms of the BSD 3-Clause License. #
# #
# The full license is in the file LICENSE, distributed with this software. #
############################################################################
import os
import sys
import subprocess
# Build the test extension
here = os.path.abspath(os.path.dirname(__file__))
subprocess.check_call([sys.executable, os.path.join(here, 'setup.py'), 'build_ext', '--inplace'], cwd=here)
# Test it!
from unittest import TestCase
import xtensor_python_test as xt
import numpy as np
class XtensorTest(TestCase):
def test_rm(self):
xt.test_rm(np.array([10], dtype=int))
def test_example1(self):
self.assertEqual(4, xt.example1([4, 5, 6]))
def test_example2(self):
x = np.array([[0., 1.], [2., 3.]])
res = np.array([[2., 3.], [4., 5.]])
y = xt.example2(x)
np.testing.assert_allclose(y, res, 1e-12)
def test_example3(self):
x = np.arange(2 * 3).reshape(2, 3)
xc = np.asfortranarray(x)
y = np.arange(2 * 3 * 4).reshape(2, 3, 4)
v = y[1:, 1:, 0]
z = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5)
np.testing.assert_array_equal(xt.example3_xarray(x), x.T + 2)
np.testing.assert_array_equal(xt.example3_xarray_colmajor(xc), xc.T + 2)
np.testing.assert_array_equal(xt.example3_xtensor3(y), y.T + 2)
np.testing.assert_array_equal(xt.example3_xtensor2(x), x.T + 2)
np.testing.assert_array_equal(xt.example3_xtensor2(y[1:, 1:, 0]), v.T + 2)
np.testing.assert_array_equal(xt.example3_xtensor2_colmajor(xc), xc.T + 2)
np.testing.assert_array_equal(xt.example3_xfixed3(y), y.T + 2)
np.testing.assert_array_equal(xt.example3_xfixed2(x), x.T + 2)
np.testing.assert_array_equal(xt.example3_xfixed2_colmajor(xc), xc.T + 2)
with self.assertRaises(TypeError):
xt.example3_xtensor3(x)
with self.assertRaises(TypeError):
xt.example3_xfixed3(x)
with self.assertRaises(TypeError):
x = np.arange(3*2).reshape(3, 2)
xt.example3_xfixed2(x)
def test_broadcast_addition(self):
x = np.array([[2., 3., 4., 5.]])
y = np.array([[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.]])
res = np.array([[3., 5., 7., 9.],
[3., 5., 7., 9.],
[3., 5., 7., 9.]])
z = xt.array_addition(x, y)
np.testing.assert_allclose(z, res, 1e-12)
def test_broadcast_subtraction(self):
x = np.array([[4., 5., 6., 7.]])
y = np.array([[4., 3., 2., 1.],
[4., 3., 2., 1.],
[4., 3., 2., 1.]])
res = np.array([[0., 2., 4., 6.],
[0., 2., 4., 6.],
[0., 2., 4., 6.]])
z = xt.array_subtraction(x, y)
np.testing.assert_allclose(z, res, 1e-12)
def test_broadcast_multiplication(self):
x = np.array([[1., 2., 3., 4.]])
y = np.array([[3., 2., 3., 2.],
[3., 2., 3., 2.],
[3., 2., 3., 2.]])
res = np.array([[3., 4., 9., 8.],
[3., 4., 9., 8.],
[3., 4., 9., 8.]])
z = xt.array_multiplication(x, y)
np.testing.assert_allclose(z, res, 1e-12)
def test_broadcast_division(self):
x = np.array([[8., 6., 4., 2.]])
y = np.array([[2., 2., 2., 2.],
[2., 2., 2., 2.],
[2., 2., 2., 2.]])
res = np.array([[4., 3., 2., 1.],
[4., 3., 2., 1.],
[4., 3., 2., 1.]])
z = xt.array_division(x, y)
np.testing.assert_allclose(z, res, 1e-12)
def test_vectorize(self):
x1 = np.array([[0, 1], [2, 3]])
x2 = np.array([0, 1])
res = np.array([[0, 2], [2, 4]])
y = xt.vectorize_example1(x1, x2)
np.testing.assert_array_equal(y, res)
def test_readme_example1(self):
v = np.arange(15).reshape(3, 5)
y = xt.readme_example1(v)
np.testing.assert_allclose(y, 1.2853996391883833, 1e-12)
def test_complex_overload_reg(self):
a = 23.23
c = 2.0 + 3.1j
self.assertEqual(xt.complex_overload_reg(a), a)
self.assertEqual(xt.complex_overload_reg(c), c)
def test_complex_overload(self):
a = np.random.rand(3, 3)
b = np.random.rand(3, 3)
c = a + b * 1j
y = xt.complex_overload(c)
np.testing.assert_allclose(np.imag(y), np.imag(c))
np.testing.assert_allclose(np.real(y), np.real(c))
x = xt.complex_overload(b)
self.assertEqual(x.dtype, b.dtype)
np.testing.assert_allclose(x, b)
def test_readme_example2(self):
x = np.arange(15).reshape(3, 5)
y = [1, 2, 3, 4, 5]
z = xt.readme_example2(x, y)
np.testing.assert_allclose(z,
[[-0.540302, 1.257618, 1.89929 , 0.794764, -1.040465],
[-1.499227, 0.136731, 1.646979, 1.643002, 0.128456],
[-1.084323, -0.583843, 0.45342 , 1.073811, 0.706945]], 1e-5)
def test_rect_to_polar(self):
x = np.ones(10, dtype=complex)
z = xt.rect_to_polar(x[::2]);
np.testing.assert_allclose(z, np.ones(5, dtype=float), 1e-5)
def test_shape_comparison(self):
x = np.ones([4, 4])
y = np.ones([5, 5])
z = np.zeros([4, 4])
self.assertFalse(xt.compare_shapes(x, y))
self.assertTrue(xt.compare_shapes(x, z))
def test_int_overload(self):
for dtype in [np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64]:
b = xt.int_overload(np.ones((10), dtype))
self.assertEqual(str(dtype.__name__), b)
def test_dtype(self):
var = xt.dtype_to_python()
self.assertEqual(var.dtype.names, ('a', 'b', 'c', 'x'))
exp_dtype = {
'a': (np.dtype('float64'), 0),
'b': (np.dtype('int32'), 8),
'c': (np.dtype('int8'), 12),
'x': (np.dtype(('<f8', (3,))), 16)
}
self.assertEqual(var.dtype.fields, exp_dtype)
self.assertEqual(var[0]['a'], 123)
self.assertEqual(var[0]['b'], 321)
self.assertEqual(var[0]['c'], ord('a'))
self.assertTrue(np.all(var[0]['x'] == [1, 2, 3]))
self.assertEqual(var[1]['a'], 111)
self.assertEqual(var[1]['b'], 222)
self.assertEqual(var[1]['c'], ord('x'))
self.assertTrue(np.all(var[1]['x'] == [5, 5, 5]))
d_dtype = np.dtype({'names':['a','b'], 'formats':['<f8','<i4'], 'offsets':[0,8], 'itemsize':16})
darr = np.array([(1, ord('p')), (123, ord('c'))], dtype=d_dtype)
self.assertEqual(darr[0]['a'], 1)
res = xt.dtype_from_python(darr)
self.assertEqual(res[0]['a'], 123.)
self.assertEqual(darr[0]['a'], 123.)
def test_char_array(self):
var = np.array(['hello', 'from', 'python'], dtype=np.dtype('|S20'));
self.assertEqual(var[0], b'hello')
xt.char_array(var)
self.assertEqual(var[0], b'hello')
self.assertEqual(var[1], b'from')
self.assertEqual(var[2], b'c++')
def test_col_row_major(self):
var = np.arange(50, dtype=float).reshape(2, 5, 5)
with self.assertRaises(RuntimeError):
xt.col_major_array(var)
with self.assertRaises(TypeError):
xt.row_major_tensor(var.T)
with self.assertRaises(TypeError):
xt.row_major_tensor(var[:, ::2, ::2])
with self.assertRaises(TypeError):
# raise for wrong dimension
xt.row_major_tensor(var[0, 0, :])
xt.row_major_tensor(var)
varF = np.arange(50, dtype=float).reshape(2, 5, 5, order='F')
xt.col_major_array(varF)
xt.col_major_array(varF[:, :, 0]) # still col major!
def test_xscalar(self):
var = np.arange(50, dtype=int)
self.assertTrue(np.sum(var) == xt.xscalar(var))
def test_bad_argument_call(self):
with self.assertRaises(TypeError):
xt.simple_array("foo")
with self.assertRaises(TypeError):
xt.simple_tensor("foo")
def test_diff_shape_overload(self):
self.assertEqual(1, xt.diff_shape_overload(np.ones(2)))
self.assertEqual(2, xt.diff_shape_overload(np.ones((2, 2))))
with self.assertRaises(TypeError):
# FIXME: the TypeError information is not informative
xt.diff_shape_overload(np.ones((2, 2, 2)))
def test_native_casters(self):
import gc
# check keep alive policy for get_strided_view()
gc.collect()
obj = xt.test_native_casters()
a = obj.get_strided_view()
obj = None
gc.collect()
_ = np.zeros((100, 100))
self.assertEqual(a.sum(), a.size)
# check keep alive policy for get_array_adapter()
gc.collect()
obj = xt.test_native_casters()
a = obj.get_array_adapter()
obj = None
gc.collect()
_ = np.zeros((100, 100))
self.assertEqual(a.sum(), a.size)
# check keep alive policy for get_array_adapter()
gc.collect()
obj = xt.test_native_casters()
a = obj.get_tensor_adapter()
obj = None
gc.collect()
_ = np.zeros((100, 100))
self.assertEqual(a.sum(), a.size)
# check keep alive policy for get_owning_array_adapter()
gc.collect()
obj = xt.test_native_casters()
a = obj.get_owning_array_adapter()
gc.collect()
_ = np.zeros((100, 100))
self.assertEqual(a.sum(), a.size)
# check keep alive policy for view_keep_alive_member_function()
gc.collect()
a = np.ones((100, 100))
b = obj.view_keep_alive_member_function(a)
obj = None
a = None
gc.collect()
_ = np.zeros((100, 100))
self.assertEqual(b.sum(), b.size)
# check shared buffer (insure that no copy is done)
obj = xt.test_native_casters()
arr = obj.get_array()
strided_view = obj.get_strided_view()
strided_view[0, 1] = -1
self.assertEqual(strided_view.shape, (1, 2))
self.assertEqual(arr[0, 2], -1)
adapter = obj.get_array_adapter()
self.assertEqual(adapter.shape, (2, 2))
adapter[1, 1] = -2
self.assertEqual(arr[0, 5], -2)
adapter = obj.get_tensor_adapter()
self.assertEqual(adapter.shape, (2, 2))
adapter[1, 1] = -3
self.assertEqual(arr[0, 5], -3)
class AttributeTest(TestCase):
def setUp(self):
self.c = xt.C()
def test_copy(self):
arr = self.c.copy
arr[0] = 1
self.assertEqual([0.]*4, self.c.copy.tolist())
def test_reference(self):
arr = self.c.ref
arr[0] = 1
self.assertEqual([1.] + [0.]*3, self.c.ref.tolist())