-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path08_CountOfSubset_with_given_difference.cpp
94 lines (81 loc) · 2.59 KB
/
08_CountOfSubset_with_given_difference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// Question Link :- https://www.geeksforgeeks.org/problems/partitions-with-given-difference/1
// Partitions with Given Difference
// Tabulation
// T.C = O(n*sum(arr))
// S.C = O(sum(arr))
class Solution {
public:
int mod = 1e9+7;
int CountSubsetsWithSum(vector<int>& arr, int n, int sum) {
// int t[n + 1][sum + 1];
vector<vector<int>> t(n + 1, vector<int>(sum + 1, 0));
// initialization
for (int i = 0; i <= n; i++) { // i -> size of the array
for (int j = 0; j <= sum; j++) { // j -> target sum (subset sum)
if (i == 0) {
t[i][j] = 0;
}
if (j == 0) {
t[i][j] = 1;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
if (arr[i - 1] <= j) { // when element in the list is less then target sum
t[i][j] = (t[i - 1][j - arr[i - 1]] + t[i - 1][j]) % mod; // either exclude or inxlude and add both of them to get final count
} else {
t[i][j] = (t[i - 1][j]); // exclude when element in the list is greater then the sum
}
}
}
return t[n][sum]; // finally return the last row and last column element
}
int countPartitions(int n, int diff, vector<int>& arr) {
int sumOfArray = 0;
for (int i = 0; i < n; i++) {
sumOfArray += arr[i];
}
if ((sumOfArray + diff) % 2 != 0) {
return 0;
}
return CountSubsetsWithSum(arr, n, (sumOfArray + diff) / 2);
}
};
// Memoization
// T.C = O(n*sum(arr))
// S.C = O(n*sum(arr))
class Solution {
public:
int mod = 1e9 + 7;
int solve(vector<int>& arr, int target, int n, vector<vector<int>>& dp) {
if(n == 0) {
if(target == 0) {
return 1;
}
return 0;
}
if(dp[n][target] != -1) {
return dp[n][target];
}
if(arr[n-1] <= target) {
dp[n][target] = (solve(arr, target-arr[n-1], n-1, dp) + solve(arr, target, n-1, dp))%mod;
} else {
dp[n][target] = (solve(arr, target, n-1, dp))%mod;
}
return dp[n][target];
}
int countPartitions(vector<int>& arr, int diff) {
int n = arr.size();
int sumOfArray = 0;
for (int i = 0; i < n; i++) {
sumOfArray += arr[i];
}
if ((sumOfArray + diff) % 2 != 0) {
return 0;
}
int target = (sumOfArray + diff) / 2;
vector<vector<int>>dp (n+1, vector<int>(target+1, -1));
return solve(arr, target, n, dp);
}
};