|
| 1 | +"PATEGAN implementation supporting Differential Privacy budget specification." |
| 2 | +# pylint: disable = W0622, E0401 |
| 3 | +from math import log |
| 4 | +from typing import List, NamedTuple, Optional |
| 5 | + |
| 6 | +import tqdm |
| 7 | +from tensorflow import (GradientTape, clip_by_value, concat, constant, |
| 8 | + expand_dims, ones_like, tensor_scatter_nd_update, |
| 9 | + transpose, zeros, zeros_like) |
| 10 | +from tensorflow.data import Dataset |
| 11 | +from tensorflow.dtypes import cast, float64, int64 |
| 12 | +from tensorflow.keras import Model |
| 13 | +from tensorflow.keras.layers import Dense, Input, ReLU |
| 14 | +from tensorflow.keras.losses import BinaryCrossentropy |
| 15 | +from tensorflow.keras.optimizers import Adam |
| 16 | +from tensorflow.math import abs, exp, pow, reduce_sum, square |
| 17 | +from tensorflow.random import uniform |
| 18 | +from tensorflow_probability import distributions |
| 19 | + |
| 20 | +from ydata_synthetic.synthesizers import TrainParameters |
| 21 | +from ydata_synthetic.synthesizers.gan import BaseModel |
| 22 | +from ydata_synthetic.utils.gumbel_softmax import ActivationInterface |
| 23 | + |
| 24 | + |
| 25 | +# pylint: disable=R0902 |
| 26 | +class PATEGAN(BaseModel): |
| 27 | + "A basic PATEGAN synthesizer implementation with configurable differential privacy budget." |
| 28 | + |
| 29 | + __MODEL__='PATEGAN' |
| 30 | + |
| 31 | + def __init__(self, model_parameters, n_teachers: int, target_delta: float, target_epsilon: float): |
| 32 | + super().__init__(model_parameters) |
| 33 | + self.n_teachers = n_teachers |
| 34 | + self.target_epsilon = target_epsilon |
| 35 | + self.target_delta = target_delta |
| 36 | + |
| 37 | + # pylint: disable=W0201 |
| 38 | + def define_gan(self, processor_info: Optional[NamedTuple] = None): |
| 39 | + def discriminator(): |
| 40 | + return Discriminator(self.batch_size).build_model((self.data_dim,), self.layers_dim) |
| 41 | + |
| 42 | + self.generator = Generator(self.batch_size). \ |
| 43 | + build_model(input_shape=(self.noise_dim,), dim=self.layers_dim, data_dim=self.data_dim, |
| 44 | + processor_info=processor_info) |
| 45 | + self.s_discriminator = discriminator() |
| 46 | + self.t_discriminators = [discriminator() for i in range(self.n_teachers)] |
| 47 | + |
| 48 | + generator_optimizer = Adam(learning_rate=self.g_lr) |
| 49 | + discriminator_optimizer = Adam(learning_rate=self.d_lr) |
| 50 | + |
| 51 | + loss_fn = BinaryCrossentropy(from_logits=True) |
| 52 | + self.generator.compile(loss=loss_fn, optimizer=generator_optimizer) |
| 53 | + self.s_discriminator.compile(loss=loss_fn, optimizer=discriminator_optimizer) |
| 54 | + for teacher in self.t_discriminators: |
| 55 | + teacher.compile(loss=loss_fn, optimizer=discriminator_optimizer) |
| 56 | + |
| 57 | + # pylint: disable = C0103 |
| 58 | + @staticmethod |
| 59 | + def _moments_acc(n_teachers, votes, lap_scale, l_list): |
| 60 | + q = (2 + lap_scale * abs(2 * votes - n_teachers))/(4 * exp(lap_scale * abs(2 * votes - n_teachers))) |
| 61 | + |
| 62 | + update = [] |
| 63 | + for l in l_list: |
| 64 | + clip = 2 * square(lap_scale) * l * (l + 1) |
| 65 | + t = (1 - q) * pow((1 - q) / (1 - exp(2*lap_scale) * q), l) + q * exp(2 * lap_scale * l) |
| 66 | + update.append(reduce_sum(clip_by_value(t, clip_value_min=-clip, clip_value_max=clip))) |
| 67 | + return cast(update, dtype=float64) |
| 68 | + |
| 69 | + def get_data_loader(self, data) -> List[Dataset]: |
| 70 | + "Obtain a List of TF Datasets corresponding to partitions for each teacher in n_teachers." |
| 71 | + loader = [] |
| 72 | + SHUFFLE_BUFFER_SIZE = 100 |
| 73 | + |
| 74 | + for teacher_id in range(self.n_teachers): |
| 75 | + start_id = int(teacher_id * len(data) / self.n_teachers) |
| 76 | + end_id = int((teacher_id + 1) * len(data) / self.n_teachers if \ |
| 77 | + teacher_id != (self.n_teachers - 1) else len(data)) |
| 78 | + loader.append(Dataset.from_tensor_slices(data[start_id:end_id:])\ |
| 79 | + .batch(self.batch_size).shuffle(SHUFFLE_BUFFER_SIZE)) |
| 80 | + return loader |
| 81 | + |
| 82 | + # pylint:disable=R0913 |
| 83 | + def train(self, data, class_ratios, train_arguments: TrainParameters, num_cols: List[str], cat_cols: List[str]): |
| 84 | + """ |
| 85 | + Args: |
| 86 | + data: A pandas DataFrame or a Numpy array with the data to be synthesized |
| 87 | + class_ratios: |
| 88 | + train_arguments: GAN training arguments. |
| 89 | + num_cols: List of columns of the data object to be handled as numerical |
| 90 | + cat_cols: List of columns of the data object to be handled as categorical |
| 91 | + """ |
| 92 | + super().train(data, num_cols, cat_cols) |
| 93 | + |
| 94 | + data = self.processor.transform(data) |
| 95 | + self.data_dim = data.shape[1] |
| 96 | + self.define_gan(self.processor.col_transform_info) |
| 97 | + |
| 98 | + self.class_ratios = class_ratios |
| 99 | + |
| 100 | + alpha = cast([0.0 for _ in range(train_arguments.num_moments)], float64) |
| 101 | + l_list = 1 + cast(range(train_arguments.num_moments), float64) |
| 102 | + |
| 103 | + # print("initial alpha", l_list.shape) |
| 104 | + |
| 105 | + cross_entropy = BinaryCrossentropy(from_logits=True) |
| 106 | + |
| 107 | + generator_optimizer = Adam(learning_rate=train_arguments.lr) |
| 108 | + disc_opt_stu = Adam(learning_rate=train_arguments.lr) |
| 109 | + disc_opt_t = [Adam(learning_rate=train_arguments.lr) for i in range(self.n_teachers)] |
| 110 | + |
| 111 | + train_loader = self.get_data_loader(data, self.batch_size) |
| 112 | + |
| 113 | + steps = 0 |
| 114 | + epsilon = 0 |
| 115 | + |
| 116 | + category_samples = distributions.Categorical(probs=self.class_ratios, dtype=float64) |
| 117 | + |
| 118 | + while epsilon < self.target_epsilon: |
| 119 | + # train the teacher descriminator |
| 120 | + for t_2 in range(train_arguments.num_teacher_iters): |
| 121 | + for i in range(self.n_teachers): |
| 122 | + inputs, categories = None, None |
| 123 | + for b, data_ in enumerate(train_loader[i]): |
| 124 | + inputs, categories = data_, b |
| 125 | + #categories will give zero value in each loop as the loop break after running the first time |
| 126 | + #inputs will have only the first batch of data |
| 127 | + break |
| 128 | + |
| 129 | + with GradientTape() as disc_tape: |
| 130 | + # train with real |
| 131 | + dis_data = concat([inputs, zeros([inputs.shape[0], 1], dtype=float64)], 1) |
| 132 | + # print("1st batch data", dis_data.shape) |
| 133 | + real_output = self.t_discriminators[i](dis_data, training=True) |
| 134 | + # print(real_output.shape, tf.ones.shape) |
| 135 | + |
| 136 | + # train with fake |
| 137 | + z = uniform([inputs.shape[0], self.z_dim], dtype=float64) |
| 138 | + # print("uniformly distributed noise", z.shape) |
| 139 | + |
| 140 | + sample = expand_dims(category_samples.sample(inputs.shape[0]), axis=1) |
| 141 | + # print("category", sample.shape) |
| 142 | + |
| 143 | + fake = self.generator(concat([z, sample], 1)) |
| 144 | + # print('fake', fake.shape) |
| 145 | + |
| 146 | + fake_output = self.t_discriminators[i](concat([fake, sample], 1), training=True) |
| 147 | + # print('fake_output_dis', fake_output.shape) |
| 148 | + |
| 149 | + # print("watch", disc_tape.watch(self.teacher_disc[i].trainable_variables) |
| 150 | + real_loss_disc = cross_entropy(ones_like(real_output), real_output) |
| 151 | + fake_loss_disc = cross_entropy(zeros_like(fake_output), fake_output) |
| 152 | + |
| 153 | + disc_loss = real_loss_disc + fake_loss_disc |
| 154 | + # print(disc_loss, real_loss_disc, fake_loss_disc) |
| 155 | + |
| 156 | + gradients_of_discriminator = disc_tape.gradient(disc_loss, self.t_discriminators[i].trainable_variables) |
| 157 | + # print(gradients_of_discriminator) |
| 158 | + |
| 159 | + disc_opt_t[i].apply_gradients(zip(gradients_of_discriminator, self.t_discriminators[i].trainable_variables)) |
| 160 | + |
| 161 | + # train the student discriminator |
| 162 | + for t_3 in range(train_arguments.num_student_iters): |
| 163 | + z = uniform([inputs.shape[0], self.z_dim], dtype=float64) |
| 164 | + |
| 165 | + sample = expand_dims(category_samples.sample(inputs.shape[0]), axis=1) |
| 166 | + # print("category_stu", sample.shape) |
| 167 | + |
| 168 | + with GradientTape() as stu_tape: |
| 169 | + fake = self.generator(concat([z, sample], 1)) |
| 170 | + # print('fake_stu', fake.shape) |
| 171 | + |
| 172 | + predictions, clean_votes = self._pate_voting( |
| 173 | + concat([fake, sample], 1), self.t_discriminators, train_arguments.lap_scale) |
| 174 | + # print("noisy_labels", predictions.shape, "clean_votes", clean_votes.shape) |
| 175 | + outputs = self.s_discriminator(concat([fake, sample], 1)) |
| 176 | + |
| 177 | + # update the moments |
| 178 | + alpha = alpha + self._moments_acc(self.n_teachers, clean_votes, train_arguments.lap_scale, l_list) |
| 179 | + # print("final_alpha", alpha) |
| 180 | + |
| 181 | + stu_loss = cross_entropy(predictions, outputs) |
| 182 | + gradients_of_stu = stu_tape.gradient(stu_loss, self.s_discriminator.trainable_variables) |
| 183 | + # print(gradients_of_stu) |
| 184 | + |
| 185 | + disc_opt_stu.apply_gradients(zip(gradients_of_stu, self.s_discriminator.trainable_variables)) |
| 186 | + |
| 187 | + # train the generator |
| 188 | + z = uniform([inputs.shape[0], self.z_dim], dtype=float64) |
| 189 | + |
| 190 | + sample_g = expand_dims(category_samples.sample(inputs.shape[0]), axis=1) |
| 191 | + |
| 192 | + with GradientTape() as gen_tape: |
| 193 | + fake = self.generator(concat([z, sample_g], 1)) |
| 194 | + output = self.s_discriminator(concat([fake, sample_g], 1)) |
| 195 | + |
| 196 | + loss_gen = cross_entropy(ones_like(output), output) |
| 197 | + gradients_of_generator = gen_tape.gradient(loss_gen, self.generator.trainable_variables) |
| 198 | + generator_optimizer.apply_gradients(zip(gradients_of_generator, self.generator.trainable_variables)) |
| 199 | + |
| 200 | + # Calculate the current privacy cost |
| 201 | + epsilon = min((alpha - log(self.delta)) / l_list) |
| 202 | + if steps % 1 == 0: |
| 203 | + print("Step : ", steps, "Loss SD : ", stu_loss, "Loss G : ", loss_gen, "Epsilon : ", epsilon) |
| 204 | + |
| 205 | + steps += 1 |
| 206 | + # self.generator.summary() |
| 207 | + |
| 208 | + def _pate_voting(self, data, netTD, lap_scale): |
| 209 | + # TODO: Validate the logic against original article |
| 210 | + ## Faz os votos dos teachers (1/0) netTD para cada record em data e guarda em results |
| 211 | + results = zeros([len(netTD), data.shape[0]], dtype=int64) |
| 212 | + # print(results) |
| 213 | + for i in range(len(netTD)): |
| 214 | + output = netTD[i](data, training=True) |
| 215 | + pred = transpose(cast((output > 0.5), int64)) |
| 216 | + # print(pred) |
| 217 | + results = tensor_scatter_nd_update(results, constant([[i]]), pred) |
| 218 | + # print(results) |
| 219 | + |
| 220 | + #guarda o somatorio das probabilidades atribuidas por cada disc a cada record (valores entre 0 e len(netTD)) |
| 221 | + clean_votes = expand_dims(cast(reduce_sum(results, 0), dtype=float64), 1) |
| 222 | + # print("clean_votes",clean_votes) |
| 223 | + noise_sample = distributions.Laplace(loc=0, scale=1/lap_scale).sample(clean_votes.shape) |
| 224 | + # print("noise_sample", noise_sample) |
| 225 | + noisy_results = clean_votes + cast(noise_sample, float64) |
| 226 | + noisy_labels = cast((noisy_results > len(netTD)/2), float64) |
| 227 | + |
| 228 | + return noisy_labels, clean_votes |
| 229 | + |
| 230 | + |
| 231 | +class Discriminator(Model): |
| 232 | + def __init__(self, batch_size): |
| 233 | + self.batch_size = batch_size |
| 234 | + |
| 235 | + def build_model(self, input_shape, dim): |
| 236 | + input = Input(shape=input_shape, batch_size=self.batch_size) |
| 237 | + x = Dense(dim * 4)(input) |
| 238 | + x = ReLU()(x) |
| 239 | + x = Dense(dim * 2)(x) |
| 240 | + x = Dense(1)(x) |
| 241 | + return Model(inputs=input, outputs=x) |
| 242 | + |
| 243 | + |
| 244 | +class Generator(Model): |
| 245 | + def __init__(self, batch_size): |
| 246 | + self.batch_size = batch_size |
| 247 | + |
| 248 | + def build_model(self, input_shape, dim, data_dim, processor_info: Optional[NamedTuple] = None): |
| 249 | + input = Input(shape=input_shape, batch_size = self.batch_size) |
| 250 | + x = Dense(dim)(input) |
| 251 | + x = ReLU()(x) |
| 252 | + x = Dense(dim * 2)(x) |
| 253 | + x = Dense(data_dim)(x) |
| 254 | + if processor_info: |
| 255 | + x = ActivationInterface(processor_info, 'ActivationInterface')(x) |
| 256 | + return Model(inputs=input, outputs=x) |
0 commit comments