forked from GoogleCloudPlatform/DataflowSDK-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_ptransform.py
131 lines (100 loc) · 3.81 KB
/
custom_ptransform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Various implementations of a Count custom PTransform.
These example show the different ways you can write custom PTransforms.
"""
from __future__ import absolute_import
import argparse
import logging
import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
# pylint doesn't understand our pipeline syntax:
# pylint:disable=expression-not-assigned
class Count1(beam.PTransform):
"""Count as a subclass of PTransform, with an apply method."""
def expand(self, pcoll):
return (
pcoll
| 'ParWithOne' >> beam.Map(lambda v: (v, 1))
| beam.CombinePerKey(sum))
def run_count1(known_args, options):
"""Runs the first example pipeline."""
logging.info('Running first pipeline')
with beam.Pipeline(options=options) as p:
(p | beam.io.ReadFromText(known_args.input)
| Count1()
| beam.io.WriteToText(known_args.output))
@beam.ptransform_fn
def Count2(pcoll): # pylint: disable=invalid-name
"""Count as a decorated function."""
return (
pcoll
| 'PairWithOne' >> beam.Map(lambda v: (v, 1))
| beam.CombinePerKey(sum))
def run_count2(known_args, options):
"""Runs the second example pipeline."""
logging.info('Running second pipeline')
with beam.Pipeline(options=options) as p:
(p | ReadFromText(known_args.input)
| Count2() # pylint: disable=no-value-for-parameter
| WriteToText(known_args.output))
@beam.ptransform_fn
def Count3(pcoll, factor=1): # pylint: disable=invalid-name
"""Count as a decorated function with a side input.
Args:
pcoll: the PCollection passed in from the previous transform
factor: the amount by which to count
Returns:
A PCollection counting the number of times each unique element occurs.
"""
return (
pcoll
| 'PairWithOne' >> beam.Map(lambda v: (v, factor))
| beam.CombinePerKey(sum))
def run_count3(known_args, options):
"""Runs the third example pipeline."""
logging.info('Running third pipeline')
with beam.Pipeline(options=options) as p:
(p | ReadFromText(known_args.input)
| Count3(2) # pylint: disable=no-value-for-parameter
| WriteToText(known_args.output))
def get_args(argv):
"""Determines user specified arguments from the given list of arguments.
Args:
argv: all arguments.
Returns:
A pair of argument lists containing known and remaining arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--input',
required=True,
help='Input file to process.')
parser.add_argument('--output',
required=True,
help='Output file to write results to.')
return parser.parse_known_args(argv)
def run(argv=None):
known_args, pipeline_args = get_args(argv)
options = PipelineOptions(pipeline_args)
run_count1(known_args, options)
run_count2(known_args, options)
run_count3(known_args, options)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()