|
| 1 | +import sys |
| 2 | +from threading import Thread |
| 3 | +from typing import List, Literal, Optional |
| 4 | + |
| 5 | +import torch |
| 6 | +import uvicorn |
| 7 | +from datetime import datetime |
| 8 | +from fastapi import FastAPI |
| 9 | +from pydantic import BaseModel |
| 10 | +from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
| 11 | + |
| 12 | + |
| 13 | +app = FastAPI() |
| 14 | + |
| 15 | + |
| 16 | +class MessageInput(BaseModel): |
| 17 | + role: Literal["user", "assistant", "system"] |
| 18 | + content: str |
| 19 | + name: Optional[str] = None |
| 20 | + |
| 21 | + |
| 22 | +class MessageOutput(BaseModel): |
| 23 | + role: Literal["assistant"] |
| 24 | + content: str = None |
| 25 | + name: Optional[str] = None |
| 26 | + |
| 27 | + |
| 28 | +class Choice(BaseModel): |
| 29 | + message: MessageOutput |
| 30 | + |
| 31 | + |
| 32 | +class Request(BaseModel): |
| 33 | + messages: List[MessageInput] |
| 34 | + temperature: Optional[float] = 0.8 |
| 35 | + top_p: Optional[float] = 0.8 |
| 36 | + max_tokens: Optional[int] = 1024 |
| 37 | + repetition_penalty: Optional[float] = 1.0 |
| 38 | + |
| 39 | + |
| 40 | +class Response(BaseModel): |
| 41 | + model: str |
| 42 | + choices: List[Choice] |
| 43 | + |
| 44 | + |
| 45 | +@app.post("/v1/chat/completions", response_model=Response) |
| 46 | +async def create_chat_completion(request: Request): |
| 47 | + global model, tokenizer |
| 48 | + |
| 49 | + print(datetime.now()) |
| 50 | + print("\033[91m--received_request\033[0m", request) |
| 51 | + messages = [message.model_dump() for message in request.messages] |
| 52 | + model_inputs = tokenizer.apply_chat_template( |
| 53 | + messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" |
| 54 | + ).to(model.device) |
| 55 | + streamer = TextIteratorStreamer(tokenizer=tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True) |
| 56 | + generate_kwargs = { |
| 57 | + "input_ids": model_inputs["input_ids"], |
| 58 | + "attention_mask": model_inputs["attention_mask"], |
| 59 | + "streamer": streamer, |
| 60 | + "max_new_tokens": request.max_tokens, |
| 61 | + "do_sample": True, |
| 62 | + "top_p": request.top_p, |
| 63 | + "temperature": request.temperature, |
| 64 | + "repetition_penalty": request.repetition_penalty, |
| 65 | + "eos_token_id": model.config.eos_token_id, |
| 66 | + } |
| 67 | + thread = Thread(target=model.generate, kwargs=generate_kwargs) |
| 68 | + thread.start() |
| 69 | + |
| 70 | + result = "" |
| 71 | + for new_token in streamer: |
| 72 | + result += new_token |
| 73 | + print(datetime.now()) |
| 74 | + print("\033[91m--generated_text\033[0m", result) |
| 75 | + |
| 76 | + message = MessageOutput( |
| 77 | + role="assistant", |
| 78 | + content=result, |
| 79 | + ) |
| 80 | + choice = Choice( |
| 81 | + message=message, |
| 82 | + ) |
| 83 | + response = Response(model=sys.argv[1].split("/")[-1].lower(), choices=[choice]) |
| 84 | + return response |
| 85 | + |
| 86 | + |
| 87 | +torch.cuda.empty_cache() |
| 88 | + |
| 89 | +if __name__ == "__main__": |
| 90 | + MODEL_PATH = sys.argv[1] |
| 91 | + |
| 92 | + tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) |
| 93 | + model = AutoModelForCausalLM.from_pretrained( |
| 94 | + MODEL_PATH, |
| 95 | + torch_dtype=torch.bfloat16, |
| 96 | + device_map="auto", |
| 97 | + ).eval() |
| 98 | + |
| 99 | + uvicorn.run(app, host="0.0.0.0", port=8000, workers=1) |
0 commit comments