forked from prometheus/prometheus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfo.go
454 lines (408 loc) · 13.6 KB
/
info.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// Copyright 2024 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"context"
"errors"
"fmt"
"slices"
"strings"
"github.com/grafana/regexp"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/promql/parser"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/util/annotations"
)
const targetInfo = "target_info"
// identifyingLabels are the labels we consider as identifying for info metrics.
// Currently hard coded, so we don't need knowledge of individual info metrics.
var identifyingLabels = []string{"instance", "job"}
// evalInfo implements the info PromQL function.
func (ev *evaluator) evalInfo(ctx context.Context, args parser.Expressions) (parser.Value, annotations.Annotations) {
val, annots := ev.eval(ctx, args[0])
mat := val.(Matrix)
// Map from data label name to matchers.
dataLabelMatchers := map[string][]*labels.Matcher{}
var infoNameMatchers []*labels.Matcher
if len(args) > 1 {
// TODO: Introduce a dedicated LabelSelector type.
labelSelector := args[1].(*parser.VectorSelector)
for _, m := range labelSelector.LabelMatchers {
dataLabelMatchers[m.Name] = append(dataLabelMatchers[m.Name], m)
if m.Name == labels.MetricName {
infoNameMatchers = append(infoNameMatchers, m)
}
}
} else {
infoNameMatchers = []*labels.Matcher{labels.MustNewMatcher(labels.MatchEqual, labels.MetricName, targetInfo)}
}
// Don't try to enrich info series.
ignoreSeries := map[int]struct{}{}
loop:
for i, s := range mat {
name := s.Metric.Get(labels.MetricName)
for _, m := range infoNameMatchers {
if m.Matches(name) {
ignoreSeries[i] = struct{}{}
continue loop
}
}
}
selectHints := ev.infoSelectHints(args[0])
infoSeries, ws, err := ev.fetchInfoSeries(ctx, mat, ignoreSeries, dataLabelMatchers, selectHints)
if err != nil {
ev.error(err)
}
annots.Merge(ws)
res, ws := ev.combineWithInfoSeries(ctx, mat, infoSeries, ignoreSeries, dataLabelMatchers)
annots.Merge(ws)
return res, annots
}
// infoSelectHints calculates the storage.SelectHints for selecting info series, given expr (first argument to info call).
func (ev *evaluator) infoSelectHints(expr parser.Expr) storage.SelectHints {
var nodeTimestamp *int64
var offset int64
parser.Inspect(expr, func(node parser.Node, _ []parser.Node) error {
switch n := node.(type) {
case *parser.VectorSelector:
if n.Timestamp != nil {
nodeTimestamp = n.Timestamp
}
offset = durationMilliseconds(n.OriginalOffset)
return errors.New("end traversal")
default:
return nil
}
})
start := ev.startTimestamp
end := ev.endTimestamp
if nodeTimestamp != nil {
// The timestamp on the selector overrides everything.
start = *nodeTimestamp
end = *nodeTimestamp
}
// Reduce the start by one fewer ms than the lookback delta
// because wo want to exclude samples that are precisely the
// lookback delta before the eval time.
start -= durationMilliseconds(ev.lookbackDelta) - 1
start -= offset
end -= offset
return storage.SelectHints{
Start: start,
End: end,
Step: ev.interval,
Func: "info",
}
}
// fetchInfoSeries fetches info series given matching identifying labels in mat.
// Series in ignoreSeries are not fetched.
// dataLabelMatchers may be mutated.
func (ev *evaluator) fetchInfoSeries(ctx context.Context, mat Matrix, ignoreSeries map[int]struct{}, dataLabelMatchers map[string][]*labels.Matcher, selectHints storage.SelectHints) (Matrix, annotations.Annotations, error) {
// A map of values for all identifying labels we are interested in.
idLblValues := map[string]map[string]struct{}{}
for i, s := range mat {
if _, exists := ignoreSeries[i]; exists {
continue
}
// Register relevant values per identifying label for this series.
for _, l := range identifyingLabels {
val := s.Metric.Get(l)
if val == "" {
continue
}
if idLblValues[l] == nil {
idLblValues[l] = map[string]struct{}{}
}
idLblValues[l][val] = struct{}{}
}
}
if len(idLblValues) == 0 {
return nil, nil, nil
}
// Generate regexps for every interesting value per identifying label.
var sb strings.Builder
idLblRegexps := make(map[string]string, len(idLblValues))
for name, vals := range idLblValues {
sb.Reset()
i := 0
for v := range vals {
if i > 0 {
sb.WriteRune('|')
}
sb.WriteString(regexp.QuoteMeta(v))
i++
}
idLblRegexps[name] = sb.String()
}
var infoLabelMatchers []*labels.Matcher
for name, re := range idLblRegexps {
infoLabelMatchers = append(infoLabelMatchers, labels.MustNewMatcher(labels.MatchRegexp, name, re))
}
var nameMatcher *labels.Matcher
for name, ms := range dataLabelMatchers {
for i, m := range ms {
if m.Name == labels.MetricName {
nameMatcher = m
ms = slices.Delete(ms, i, i+1)
}
infoLabelMatchers = append(infoLabelMatchers, m)
}
if len(ms) > 0 {
dataLabelMatchers[name] = ms
} else {
delete(dataLabelMatchers, name)
}
}
if nameMatcher == nil {
// Default to using the target_info metric.
infoLabelMatchers = append([]*labels.Matcher{labels.MustNewMatcher(labels.MatchEqual, labels.MetricName, targetInfo)}, infoLabelMatchers...)
}
infoIt := ev.querier.Select(ctx, false, &selectHints, infoLabelMatchers...)
infoSeries, ws, err := expandSeriesSet(ctx, infoIt)
if err != nil {
return nil, ws, err
}
infoMat := ev.evalSeries(ctx, infoSeries, 0, true)
return infoMat, ws, nil
}
// combineWithInfoSeries combines mat with select data labels from infoMat.
func (ev *evaluator) combineWithInfoSeries(ctx context.Context, mat, infoMat Matrix, ignoreSeries map[int]struct{}, dataLabelMatchers map[string][]*labels.Matcher) (Matrix, annotations.Annotations) {
buf := make([]byte, 0, 1024)
lb := labels.NewScratchBuilder(0)
sigFunction := func(name string) func(labels.Labels) string {
return func(lset labels.Labels) string {
lb.Reset()
lb.Add(labels.MetricName, name)
lset.MatchLabels(true, identifyingLabels...).Range(func(l labels.Label) {
lb.Add(l.Name, l.Value)
})
lb.Sort()
return string(lb.Labels().Bytes(buf))
}
}
infoMetrics := map[string]struct{}{}
for _, is := range infoMat {
lblMap := is.Metric.Map()
infoMetrics[lblMap[labels.MetricName]] = struct{}{}
}
sigfs := make(map[string]func(labels.Labels) string, len(infoMetrics))
for name := range infoMetrics {
sigfs[name] = sigFunction(name)
}
// Keep a copy of the original point slices so they can be returned to the pool.
origMatrices := []Matrix{
make(Matrix, len(mat)),
make(Matrix, len(infoMat)),
}
copy(origMatrices[0], mat)
copy(origMatrices[1], infoMat)
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
originalNumSamples := ev.currentSamples
// Create an output vector that is as big as the input matrix with
// the most time series.
biggestLen := max(len(mat), len(infoMat))
baseVector := make(Vector, 0, len(mat))
infoVector := make(Vector, 0, len(infoMat))
enh := &EvalNodeHelper{
Out: make(Vector, 0, biggestLen),
}
type seriesAndTimestamp struct {
Series
ts int64
}
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
tempNumSamples := ev.currentSamples
// For every base series, compute signature per info metric.
baseSigs := make([]map[string]string, 0, len(mat))
for _, s := range mat {
sigs := make(map[string]string, len(infoMetrics))
for infoName := range infoMetrics {
sigs[infoName] = sigfs[infoName](s.Metric)
}
baseSigs = append(baseSigs, sigs)
}
infoSigs := make([]string, 0, len(infoMat))
for _, s := range infoMat {
name := s.Metric.Map()[labels.MetricName]
infoSigs = append(infoSigs, sigfs[name](s.Metric))
}
var warnings annotations.Annotations
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
if err := contextDone(ctx, "expression evaluation"); err != nil {
ev.error(err)
}
// Reset number of samples in memory after each timestamp.
ev.currentSamples = tempNumSamples
// Gather input vectors for this timestamp.
baseVector, _ = ev.gatherVector(ts, mat, baseVector, nil, nil)
infoVector, _ = ev.gatherVector(ts, infoMat, infoVector, nil, nil)
enh.Ts = ts
result, err := ev.combineWithInfoVector(baseVector, infoVector, ignoreSeries, baseSigs, infoSigs, enh, dataLabelMatchers)
if err != nil {
ev.error(err)
}
enh.Out = result[:0] // Reuse result vector.
vecNumSamples := result.TotalSamples()
ev.currentSamples += vecNumSamples
// When we reset currentSamples to tempNumSamples during the next iteration of the loop it also
// needs to include the samples from the result here, as they're still in memory.
tempNumSamples += vecNumSamples
ev.samplesStats.UpdatePeak(ev.currentSamples)
if ev.currentSamples > ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
// Add samples in result vector to output series.
for _, sample := range result {
h := sample.Metric.Hash()
ss, exists := seriess[h]
if exists {
if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate.
ev.errorf("vector cannot contain metrics with the same labelset")
}
ss.ts = ts
} else {
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
}
addToSeries(&ss.Series, enh.Ts, sample.F, sample.H, numSteps)
seriess[h] = ss
}
}
// Reuse the original point slices.
for _, m := range origMatrices {
for _, s := range m {
putFPointSlice(s.Floats)
putHPointSlice(s.Histograms)
}
}
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
numSamples := 0
output := make(Matrix, 0, len(seriess))
for _, ss := range seriess {
numSamples += len(ss.Floats) + totalHPointSize(ss.Histograms)
output = append(output, ss.Series)
}
ev.currentSamples = originalNumSamples + numSamples
ev.samplesStats.UpdatePeak(ev.currentSamples)
return output, warnings
}
// combineWithInfoVector combines base and info Vectors.
// Base series in ignoreSeries are not combined.
func (ev *evaluator) combineWithInfoVector(base, info Vector, ignoreSeries map[int]struct{}, baseSigs []map[string]string, infoSigs []string, enh *EvalNodeHelper, dataLabelMatchers map[string][]*labels.Matcher) (Vector, error) {
if len(base) == 0 {
return nil, nil // Short-circuit: nothing is going to match.
}
// All samples from the info Vector hashed by the matching label/values.
if enh.rightSigs == nil {
enh.rightSigs = make(map[string]Sample, len(enh.Out))
} else {
clear(enh.rightSigs)
}
for i, s := range info {
if s.H != nil {
ev.error(errors.New("info sample should be float"))
}
// We encode original info sample timestamps via the float value.
origT := int64(s.F)
sig := infoSigs[i]
if existing, exists := enh.rightSigs[sig]; exists {
// We encode original info sample timestamps via the float value.
existingOrigT := int64(existing.F)
switch {
case existingOrigT > origT:
// Keep the other info sample, since it's newer.
case existingOrigT < origT:
// Keep this info sample, since it's newer.
enh.rightSigs[sig] = s
default:
// The two info samples have the same timestamp - conflict.
name := s.Metric.Map()[labels.MetricName]
ev.errorf("found duplicate series for info metric %s", name)
}
} else {
enh.rightSigs[sig] = s
}
}
for i, bs := range base {
if _, exists := ignoreSeries[i]; exists {
// This series should not be enriched with info metric data labels.
enh.Out = append(enh.Out, Sample{
Metric: bs.Metric,
F: bs.F,
H: bs.H,
})
continue
}
baseLabels := bs.Metric.Map()
enh.resetBuilder(labels.Labels{})
// For every info metric name, try to find an info series with the same signature.
seenInfoMetrics := map[string]struct{}{}
for infoName, sig := range baseSigs[i] {
is, exists := enh.rightSigs[sig]
if !exists {
continue
}
if _, exists := seenInfoMetrics[infoName]; exists {
continue
}
err := is.Metric.Validate(func(l labels.Label) error {
if l.Name == labels.MetricName {
return nil
}
if _, exists := dataLabelMatchers[l.Name]; len(dataLabelMatchers) > 0 && !exists {
// Not among the specified data label matchers.
return nil
}
if v := enh.lb.Get(l.Name); v != "" && v != l.Value {
return fmt.Errorf("conflicting label: %s", l.Name)
}
if _, exists := baseLabels[l.Name]; exists {
// Skip labels already on the base metric.
return nil
}
enh.lb.Set(l.Name, l.Value)
return nil
})
if err != nil {
return nil, err
}
seenInfoMetrics[infoName] = struct{}{}
}
infoLbls := enh.lb.Labels()
if infoLbls.Len() == 0 {
// If there's at least one data label matcher not matching the empty string,
// we have to ignore this series as there are no matching info series.
allMatchersMatchEmpty := true
for _, ms := range dataLabelMatchers {
for _, m := range ms {
if !m.Matches("") {
allMatchersMatchEmpty = false
break
}
}
}
if !allMatchersMatchEmpty {
continue
}
}
enh.resetBuilder(bs.Metric)
infoLbls.Range(func(l labels.Label) {
enh.lb.Set(l.Name, l.Value)
})
enh.Out = append(enh.Out, Sample{
Metric: enh.lb.Labels(),
F: bs.F,
H: bs.H,
})
}
return enh.Out, nil
}