Skip to content

Async-IO/pierre_mcp_server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pierre Fitness Platform Logo

Pierre Fitness Platform

Backend CI Frontend Tests MCP Compliance

Development Status: This project is under active development. APIs and features may change.

Pierre Fitness Platform connects AI assistants to fitness data from Strava, Garmin, and Fitbit. The platform implements the Model Context Protocol (MCP), A2A protocol, OAuth 2.0, and REST APIs for integration with Claude, ChatGPT, and other AI assistants.

Intelligence System

The platform calculates fitness metrics using established sports science formulas:

  • Training Load: TSS (Training Stress Score) from power or heart rate data, CTL (42-day fitness), ATL (7-day fatigue), TSB (form indicator)
  • Race Predictions: VDOT-based predictions using Jack Daniels' VO2max formula, Riegel formula for distance scaling
  • Statistical Analysis: Linear regression for performance trends, R² coefficient for fit quality, moving averages for smoothing
  • Pattern Detection: Weekly training schedule consistency, hard/easy workout alternation, volume progression analysis
  • Sleep and Recovery: NSF/AASM-based sleep quality scoring, TSB normalization, HRV-based recovery assessment, weighted recovery calculations
  • Nutrition and USDA Integration: Mifflin-St Jeor BMR, TDEE with activity factors, sport-specific protein/carb/fat recommendations, nutrient timing, USDA FoodData Central integration (350,000+ foods)
  • Physiological Validation: Bounds checking for heart rate (100-220 bpm max), power (50-600W FTP), VO2 max (20-90 ml/kg/min)
  • Configurable Algorithms: All calculation algorithms support multiple variants (e.g., Daniels vs Riegel for VDOT, Bannister vs Edwards for TRIMP) selectable via environment variables for runtime customization

See Intelligence and Analytics Methodology and Nutrition Methodology for formulas, implementation details, and scientific references. Sleep and recovery analysis is documented in the Intelligence Methodology. See Algorithm Configuration for available algorithm variants and configuration options.

Features

  • MCP Protocol: JSON-RPC over HTTP for AI assistant integration
  • OAuth 2.0 Server: RFC 7591 dynamic client registration for MCP clients
  • RS256/JWKS: Asymmetric JWT signing with public key distribution
  • A2A Protocol: Agent-to-agent communication with capability discovery
  • Multi-Tenancy: Isolated data and configuration per organization
  • Real-Time Updates: Server-Sent Events for OAuth notifications
  • Plugin System: Compile-time plugin architecture with lifecycle management
  • PII Redaction: Middleware for sensitive data removal in logs and responses
  • Cursor Pagination: Keyset pagination for consistent large dataset traversal
  • Intelligent Caching: LRU cache with TTL for API response optimization
  • Atomic Operations: TOCTOU prevention with database-level atomic token operations
  • Structured Error Handling: Type-safe error propagation with AppError/DatabaseError/ProviderError

Architecture

Pierre Fitness Platform runs as a single HTTP server on port 8081 (configurable). All protocols (MCP, OAuth 2.0, REST API) share the same port.

mcp transport modes

┌──────────────────────────────────────────────────────────────────────────────────────┐
│                              MCP Client Integration                                  │
├──────────────────────────────────────────────────────────────────────────────────────┤
│                                                                                      │
│  stdio transport (subprocess-based)                                                  │
│  ┌─────────────────┐    stdio     ┌─────────────────┐    HTTP+OAuth   ┌──────────┐   │
│  │   MCP Client    │ ◄─────────►  │ Pierre SDK      │ ◄─────────────► │ Pierre   │   │
│  │ (Claude Desktop)│              │ Bridge          │                 │ Fitness  │   │
│  └─────────────────┘              └─────────────────┘                 │ Platform │   │
│                                                                       │          │   │
│  streamable http transport (server-based)                             │          │   │
│  ┌─────────────────┐    MCP-over-HTTP+OAuth                           │          │   │
│  │   MCP Client    │ ◄──────────────────────────────────────────────► │          │   │
│  │ (HTTP-native)   │                                                  │          │   │
│  └─────────────────┘                                                  └──────────┘   │
│                                                                                      │
└──────────────────────────────────────────────────────────────────────────────────────┘

stdio transport (via pierre-mcp-client npm package)

  • mcp clients spawn server as subprocess and communicate via stdin/stdout
  • for mcp clients using stdio transport (claude desktop, chatgpt, most existing clients)
  • sdk bridge handles oauth 2.0 flow and token management automatically
  • configuration: add sdk command to mcp client config (see mcp client integration section)

streamable http transport (direct http connection)

  • mcp clients connect directly to pierre's http endpoint
  • for mcp clients with streamable http transport support
  • direct mcp-over-http communication with oauth 2.0 authentication
  • configuration: implement oauth 2.0 flow and connect to http://localhost:8081/mcp

LLM Interaction

AI assistants query fitness data through natural language. The LLM determines which MCP tools to call and combines results.

Example Interactions

Natural Language Request What Happens Tools Used
"Calculate my daily nutrition needs for marathon training and suggest pre-workout meals" Calculates BMR/TDEE based on user profile, determines macros for endurance goal, calculates nutrient timing, searches USDA database for suitable pre-workout foods calculate_daily_nutrition, calculate_nutrient_timing, search_foods
"Get my last 10 activities and propose a week-long meal plan with protein targets based on my training load" Retrieves recent activities, analyzes intensity and duration, calculates caloric expenditure, generates nutrition recommendations with macro breakdowns get_activities, analyze_training_load, calculate_daily_nutrition
"Compare my three longest runs this month and identify areas for improvement" Fetches top runs by distance, analyzes pace consistency, heart rate zones, elevation patterns, provides feedback get_activities, compare_activities, analyze_performance_trends
"Analyze this meal: 150g chicken breast, 200g rice, 100g broccoli" Looks up each food in USDA database, retrieves complete nutrient breakdown, calculates total macros and calories for the meal analyze_meal_nutrition, get_food_details
"Check my training load for the last two weeks and tell me if I need a recovery day" Calculates cumulative training stress, analyzes recovery metrics, provides rest recommendations analyze_training_load, get_activities, generate_recommendations
"When's the best day this week for an outdoor run based on my typical schedule and weather conditions?" Analyzes activity patterns, checks weather forecasts, recommends timing detect_patterns, get_activities, weather integration

Quick Start

Prerequisites

  • Rust 1.70+
  • SQLite (default) or PostgreSQL (production)

Installation

git clone https://github.com/Async-IO/pierre_mcp_server.git
cd pierre_mcp_server
cargo build --release

Configuration

Using .envrc (Recommended)

Pierre Fitness Platform includes a .envrc file for environment configuration. Use direnv to automatically load environment variables:

# Install direnv (macOS)
brew install direnv

# Add to your shell profile (~/.zshrc or ~/.bashrc)
eval "$(direnv hook zsh)"  # or bash

# Allow direnv for this directory
cd pierre_mcp_server
direnv allow

The .envrc file includes all required configuration with development defaults. Edit .envrc to customize settings for your environment.

Manual Configuration

Required Environment Variables:

export DATABASE_URL="sqlite:./data/pierre.db"
export PIERRE_MASTER_ENCRYPTION_KEY="$(openssl rand -base64 32)"

Optional Environment Variables:

export HTTP_PORT=8081              # Server port (default: 8081)
export RUST_LOG=info               # Log level
export JWT_EXPIRY_HOURS=24         # JWT token expiry
export PIERRE_RSA_KEY_SIZE=4096    # RSA key size for JWT signing (default: 4096)

# Fitness provider OAuth (for data integration)
export STRAVA_CLIENT_ID=your_client_id
export STRAVA_CLIENT_SECRET=your_client_secret
export STRAVA_REDIRECT_URI=http://localhost:8081/api/oauth/callback/strava  # local dev only

# Garmin Connect OAuth (optional)
export GARMIN_CLIENT_ID=your_consumer_key
export GARMIN_CLIENT_SECRET=your_consumer_secret
export GARMIN_REDIRECT_URI=http://localhost:8081/api/oauth/callback/garmin  # local dev only

# Production: Use HTTPS for callback URLs
# export STRAVA_REDIRECT_URI=https://api.example.com/api/oauth/callback/strava
# export GARMIN_REDIRECT_URI=https://api.example.com/api/oauth/callback/garmin

# Weather data (optional)
export OPENWEATHER_API_KEY=your_api_key

# Algorithm configuration (optional - defaults optimized for most users)
export PIERRE_MAXHR_ALGORITHM=tanaka           # Max heart rate: fox, tanaka, nes, gulati
export PIERRE_TRIMP_ALGORITHM=hybrid           # Training impulse: bannister_male, bannister_female, edwards_simplified, lucia_banded, hybrid
export PIERRE_TSS_ALGORITHM=avg_power          # Training stress score: avg_power, normalized_power, hybrid
export PIERRE_VDOT_ALGORITHM=daniels           # Running performance: daniels, riegel, hybrid
export PIERRE_TRAINING_LOAD_ALGORITHM=ema      # Training load: ema, sma, wma, kalman
export PIERRE_RECOVERY_ALGORITHM=weighted      # Recovery aggregation: weighted, additive, multiplicative, minmax, neural
export PIERRE_FTP_ALGORITHM=from_vo2max        # Functional threshold power: 20min_test, 8min_test, ramp_test, from_vo2max, hybrid
export PIERRE_LTHR_ALGORITHM=from_maxhr        # Lactate threshold HR: from_maxhr, from_30min, from_race, lab_test, hybrid
export PIERRE_VO2MAX_ALGORITHM=from_vdot       # VO2max estimation: from_vdot, cooper, rockport, astrand, bruce, hybrid
# See docs/configuration.md#algorithm-configuration for details

# Cache configuration
export CACHE_MAX_ENTRIES=10000                    # Maximum cached entries (default: 10,000)
export CACHE_CLEANUP_INTERVAL_SECS=300            # Cleanup interval in seconds (default: 300)
export REDIS_URL=redis://localhost:6379           # Redis cache (optional, uses in-memory if not set)

See src/constants/mod.rs for all environment variables and default values.

Starting the Server

cargo run --bin pierre-mcp-server

The server will start on port 8081 and display available endpoints.

Initial Setup

Create an admin user via REST API:

curl -X POST http://localhost:8081/admin/setup \
  -H "Content-Type: application/json" \
  -d '{
    "email": "[email protected]",
    "password": "SecurePass123!",
    "display_name": "Admin"
  }'

MCP Client Integration

Pierre Fitness Platform includes an SDK bridge for direct integration with MCP clients that only support stdin/out. The SDK handles OAuth 2.0 authentication automatically.

SDK Installation

Option 1: Install from npm (Recommended)

npm install pierre-mcp-client@next

The SDK is published as a pre-release package (@next tag) during v0.x development.

Option 2: Build from source

The SDK is included in the sdk/ directory:

cd sdk
npm install
npm run build

MCP Client Configuration

Add Pierre to your MCP client configuration. For Claude Desktop:

Configuration File Location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/claude/claude_desktop_config.json

Configuration (using npm package):

{
  "mcpServers": {
    "pierre-fitness": {
      "command": "npx",
      "args": [
        "-y",
        "pierre-mcp-client@next",
        "--server",
        "http://localhost:8081"
      ]
    }
  }
}

Alternative (using local installation):

{
  "mcpServers": {
    "pierre-fitness": {
      "command": "node",
      "args": [
        "/absolute/path/to/pierre_mcp_server/sdk/dist/cli.js",
        "--server",
        "http://localhost:8081"
      ]
    }
  }
}

Replace /absolute/path/to/ with your actual path for local installations.

Authentication Flow

When the MCP client starts, the SDK will:

  1. Register an OAuth 2.0 client with Pierre Fitness Platform (RFC 7591)
  2. Open your browser for authentication
  3. Handle the OAuth callback and token exchange
  4. Use JWT tokens for all MCP requests

No manual token management required.

Streamable http transport

Mcp clients with streamable http transport support can connect directly to pierre without the sdk bridge.

Http transport setup

Mcp clients with streamable http transport connect directly to the mcp endpoint:

endpoint: http://localhost:8081/mcp (development)
endpoint: https://your-server.com/mcp (production)

Http transport authentication

Streamable http connections use oauth 2.0 authorization code flow:

  1. Client discovers oauth configuration from /.well-known/oauth-authorization-server
  2. Client registers dynamically using rfc 7591 (/oauth2/register)
  3. Opens browser for user authentication (/oauth2/authorize)
  4. Exchanges authorization code for jwt token (/oauth2/token)
  5. Uses jwt token for all subsequent mcp requests

Available MCP Tools

Pierre Fitness Platform provides 36 tools through the MCP protocol. Tool definitions are in src/protocols/universal/tool_registry.rs (ToolId enum).

Core Fitness Data

Tool Description Parameters
get_activities Get user activities from fitness providers provider (optional), limit (optional)
get_athlete Get athlete profile information None
get_stats Get athlete statistics and metrics None
analyze_activity Analyze a specific activity with detailed insights activity_id (required)
get_activity_intelligence Get AI-powered analysis for an activity activity_id (required)
get_connection_status Check OAuth connection status for providers None
disconnect_provider Disconnect from a fitness provider provider (required)

Goals and Progress

Tool Description Parameters
set_goal Set a new fitness goal goal_type, target_value (required)
suggest_goals Get AI-suggested goals based on activity history None
analyze_goal_feasibility Analyze if a goal is achievable goal_data (required)
track_progress Track progress toward goals goal_id (required)

Performance Analysis

Tool Description Parameters
calculate_metrics Calculate custom fitness metrics activity_id (required)
analyze_performance_trends Analyze performance trends over time None
compare_activities Compare activities for performance analysis activity_ids (required)
detect_patterns Detect patterns in activity data None
generate_recommendations Generate personalized training recommendations None
calculate_fitness_score Calculate overall fitness score None
predict_performance Predict future performance based on training None
analyze_training_load Analyze training load and recovery None

Sleep and Recovery

Tool Description Parameters
analyze_sleep_quality Analyze sleep quality with NSF/AASM scoring sleep_session (required)
calculate_recovery_score Calculate recovery readiness from TSB, sleep, HRV tsb, sleep_quality, hrv_data (optional)
track_sleep_trends Track sleep patterns and trends over time start_date, end_date (required)
optimize_sleep_schedule Get personalized sleep timing recommendations preferences (optional)
suggest_rest_day Get rest day recommendations based on recovery tsb, recent_load, sleep_quality (optional)

Configuration Management

Tool Description Parameters
get_configuration_catalog Get complete configuration catalog None
get_configuration_profiles Get available configuration profiles None
get_user_configuration Get current user configuration None
update_user_configuration Update user configuration parameters profile or parameters (required)
calculate_personalized_zones Calculate personalized training zones None
validate_configuration Validate configuration parameters parameters (required)

Tool descriptions from src/protocols/universal/tool_registry.rs (ToolId enum description method).

A2A (Agent-to-Agent) Protocol

Pierre Fitness Platform supports agent-to-agent communication for autonomous AI systems. Implementation in src/a2a/.

A2A Features:

  • Agent Cards for capability discovery (src/a2a/agent_card.rs)
  • Cryptographic authentication between agents
  • Asynchronous messaging protocol
  • Protocol versioning (A2A 1.0.0)

A2A Endpoints:

  • GET /a2a/status - Get A2A protocol status
  • GET /a2a/tools - Get available A2A tools
  • POST /a2a/execute - Execute A2A tool
  • GET /a2a/monitoring - Get A2A monitoring information
  • GET /a2a/client/tools - Get client-specific A2A tools
  • POST /a2a/client/execute - Execute client A2A tool

Example A2A Integration:

use pierre_mcp_server::a2a::A2AClientManager;

#[tokio::main]
async fn main() -> Result<()> {
    let client = A2AClientManager::new("https://pierre-server.com/a2a").await?;

    let response = client.send_message(
        "fitness-analyzer-agent",
        serde_json::json!({
            "action": "analyze_performance",
            "user_id": "user-123",
            "timeframe": "last_30_days"
        })
    ).await?;

    println!("Analysis: {}", response);
    Ok(())
}

Testing

Pierre Fitness Platform includes comprehensive test coverage with automated intelligence testing using synthetic data.

# Run all tests
cargo test

# Run specific test suites
cargo test --test mcp_protocol_comprehensive_test
cargo test --test mcp_multitenant_complete_test
cargo test --test intelligence_tools_basic_test
cargo test --test intelligence_tools_advanced_test

# Run with output
cargo test -- --nocapture

# Lint and test (comprehensive validation)
./scripts/lint-and-test.sh

Intelligence Testing Framework

The platform includes 30+ integration tests covering all 8 intelligence tools without OAuth dependencies:

Test Categories:

  • Basic Tools: get_athlete, get_activities, get_stats, compare_activities
  • Advanced Analytics: calculate_fitness_score, predict_performance, analyze_training_load
  • Goal Management: suggest_goals, analyze_goal_feasibility, track_progress

Synthetic Data Scenarios:

  • Beginner runner improving over time
  • Experienced cyclist with consistent training
  • Multi-sport athlete (triathlete pattern)
  • Training gaps and recovery periods

See tests/intelligence_tools_basic_test.rs and tests/intelligence_tools_advanced_test.rs for details.

RSA Key Size Configuration

Pierre Fitness Platform uses RS256 asymmetric signing for JWT tokens. Key size affects both security and performance:

Production (4096-bit keys - default):

  • Higher security with larger key size
  • Slower key generation (~10 seconds)
  • Use in production environments

Testing (2048-bit keys):

  • Faster key generation (~250ms)
  • Suitable for development and testing
  • Set via environment variable:
export PIERRE_RSA_KEY_SIZE=2048

Test Performance Optimization

Pierre Fitness Platform includes a shared test JWKS manager to eliminate RSA key generation overhead:

Shared Test JWKS Pattern (implemented in tests/common.rs:40-52):

use pierre_mcp_server_integrations::common;

// Reuses shared JWKS manager across all tests (10x faster)
let jwks_manager = common::get_shared_test_jwks();

Performance Impact:

  • Without optimization: 100ms+ RSA key generation per test
  • With shared JWKS: One-time generation, instant reuse across test suite
  • Result: 10x faster test execution

E2E Tests: The SDK test suite (sdk/test/) automatically uses 2048-bit keys via PIERRE_RSA_KEY_SIZE=2048 in server startup configuration (sdk/test/helpers/server.js:82).

Development Tools

Automated Setup

# Clean database and fresh server start
./scripts/fresh-start.sh
cargo run --bin pierre-mcp-server &

# Complete workflow test (admin + user + tenant + login + MCP)
./scripts/complete-user-workflow.sh

# Load saved environment variables
source .workflow_test_env
echo "JWT Token: ${JWT_TOKEN:0:50}..."

Management Dashboard

A web dashboard is available for monitoring:

cd frontend
npm install && npm run dev

Access at http://localhost:5173 for:

  • User management and approval
  • API key monitoring
  • Usage analytics
  • Real-time request monitoring

See frontend/README.md for details.

Documentation

Complete documentation is in the docs/ directory:

Installation guide for MCP clients:

Code Quality

Pierre Fitness Platform uses validation scripts to maintain code quality and prevent common issues:

Pre-commit Validation:

  • Pattern validation via scripts/validation-patterns.toml
  • Clippy linting with strict warnings
  • Test execution
  • Format checking

Run validation:

./scripts/lint-and-test.sh

Install git hooks:

./scripts/install-hooks.sh

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/new-feature)
  3. Run validation (./scripts/lint-and-test.sh)
  4. Commit changes (git commit -m 'feat: add new feature')
  5. Push to branch (git push origin feature/new-feature)
  6. Open a Pull Request

License

This project is dual-licensed:

You may choose either license.

About

MCP/A2A server for fitness app supporting Strava and Fitbit

Topics

Resources

License

Unknown and 2 other licenses found

Licenses found

Unknown
LICENSE
Unknown
LICENSE-APACHE
MIT
LICENSE-MIT

Contributing

Stars

Watchers

Forks

Sponsor this project

 

Contributors 2

  •  
  •