Skip to content

analytics suite #7

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
258 changes: 258 additions & 0 deletions python/bytez/updated-bytez-model-analysis-with-tasks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from bytez import Bytez
from typing import List, Dict, Literal
from pydantic import BaseModel, Field
import json
import os

# Predefined list of tasks
Task = Literal[
"audio-classification", "automatic-speech-recognition", "depth-estimation",
"document-question-answering", "feature-extraction", "fill-mask",
"image-classification", "image-feature-extraction", "image-segmentation",
"image-to-text", "mask-generation", "object-detection", "question-answering",
"sentence-similarity", "summarization", "text-classification", "text-generation",
"text-to-audio", "text-to-image", "text-to-speech", "text-to-video",
"text2text-generation", "token-classification", "translation",
"unconditional-image-generation", "video-classification",
"visual-question-answering", "zero-shot-classification",
"zero-shot-image-classification", "zero-shot-object-detection"
]

# Enhanced metadata structure
class ModelMetadata(BaseModel):
release_date: str = ""
tasks: List[Task] = Field(default_factory=list)
size: str = "Unknown"
ramRequired: int = 0

# Task Input/Output Schema
class TaskInput(BaseModel):
text: str
max_tokens: int = Field(default=100, ge=1, le=1000)
temperature: float = Field(default=0.7, ge=0, le=1)

class TaskOutput(BaseModel):
generated_text: str
token_count: int
model_used: str

class ModelEvaluationSuite:
def __init__(self, df: pd.DataFrame, model_metadata: Dict[str, ModelMetadata]):
self.df = df
self.model_metadata = model_metadata
self.preprocess_data()

def preprocess_data(self):
# Extract publisher from modelId
self.df['publisher'] = self.df['modelId'].apply(lambda x: x.split('/')[0])

# Convert ramRequired to GB for better readability
self.df['ramRequiredGB'] = self.df['ramRequired'] / 1024

# Add tasks and size information from model metadata
self.df['tasks'] = self.df['modelId'].map(lambda x: self.model_metadata.get(x, ModelMetadata()).tasks)
self.df['size'] = self.df['modelId'].map(lambda x: self.model_metadata.get(x, ModelMetadata()).size)

def basic_stats(self):
print("Basic Statistics:")
print(self.df.describe())
print("\nUnique tasks:")
task_counts = self.df['tasks'].explode().value_counts()
print(task_counts)
print("\nTop 10 publishers:")
print(self.df['publisher'].value_counts().head(10))

def ram_distribution(self):
plt.figure(figsize=(12, 6))
sns.histplot(data=self.df, x='ramRequiredGB', kde=True)
plt.title('Distribution of RAM Requirements')
plt.xlabel('RAM Required (GB)')
plt.ylabel('Count')
plt.show()

def task_distribution(self):
plt.figure(figsize=(12, 6))
task_counts = self.df['tasks'].explode().value_counts()
task_counts.plot(kind='bar')
plt.title('Distribution of Tasks')
plt.xlabel('Task')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()

def publisher_analysis(self):
top_publishers = self.df['publisher'].value_counts().head(10).index
publisher_df = self.df[self.df['publisher'].isin(top_publishers)]

plt.figure(figsize=(12, 6))
sns.boxplot(x='publisher', y='ramRequiredGB', data=publisher_df)
plt.title('RAM Requirements by Top Publishers')
plt.xlabel('Publisher')
plt.ylabel('RAM Required (GB)')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()

def task_ram_analysis(self):
plt.figure(figsize=(12, 6))
sns.boxplot(x='tasks', y='ramRequiredGB', data=self.df.explode('tasks'))
plt.title('RAM Requirements by Task')
plt.xlabel('Task')
plt.ylabel('RAM Required (GB)')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()

def cluster_analysis(self):
# Select features for clustering
features = ['ramRequiredGB']
X = self.df[features]

# Standardize features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Perform K-means clustering
kmeans = KMeans(n_clusters=3, random_state=42)
self.df['cluster'] = kmeans.fit_predict(X_scaled)

# Visualize clusters
plt.figure(figsize=(10, 6))
sns.scatterplot(x='ramRequiredGB', y='cluster', hue='cluster', data=self.df)
plt.title('Model Clusters based on RAM Requirements')
plt.xlabel('RAM Required (GB)')
plt.ylabel('Cluster')
plt.show()

def run_full_analysis(self):
self.basic_stats()
self.ram_distribution()
self.task_distribution()
self.publisher_analysis()
self.task_ram_analysis()
self.cluster_analysis()

def select_model(task_description: str, df: pd.DataFrame) -> str:
task_models = df[df['tasks'].apply(lambda tasks: any(task in task_description.lower() for task in tasks))]
if not task_models.empty:
return task_models.iloc[0]['modelId']
return df.iloc[0]['modelId'] # Default to first model if no match

def collaborative_input(user_input: str, gpt4_suggestion: str) -> TaskInput:
print("User Input:", user_input)
print("GPT-4o-mini Suggestion:", gpt4_suggestion)

final_input = input("Please provide the final input based on the above suggestions: ")

return TaskInput(text=final_input)

def load_or_create_model_metadata(model_list: List[Dict]) -> Dict[str, ModelMetadata]:
metadata_file = 'bytez_model_metadata.json'
if os.path.exists(metadata_file):
with open(metadata_file, 'r') as f:
return {k: ModelMetadata(**v) for k, v in json.load(f).items()}
else:
# Create a basic metadata structure if file doesn't exist
metadata = {model['modelId']: ModelMetadata(ramRequired=model['ramRequired']) for model in model_list}
with open(metadata_file, 'w') as f:
json.dump({k: v.dict() for k, v in metadata.items()}, f, indent=2)
return metadata

def update_model_metadata(model_metadata: Dict[str, ModelMetadata], df: pd.DataFrame) -> Dict[str, ModelMetadata]:
for model_id, model_info in model_metadata.items():
if not model_info.tasks:
# If tasks are not set, try to infer from the model ID
possible_tasks = [task for task in Task.__args__ if task.replace("-", "") in model_id.lower()]
model_info.tasks = possible_tasks if possible_tasks else ["text-generation"] # Default to text-generation if no match

# Save updated metadata
with open('bytez_model_metadata.json', 'w') as f:
json.dump({k: v.dict() for k, v in model_metadata.items()}, f, indent=2)

return model_metadata

# Main execution
if __name__ == "__main__":
# Initialize Bytez client
client = Bytez("BYTEZ_API_KEY")
model_list = client.list_models()
df = pd.DataFrame(model_list)

# Load or create model metadata
model_metadata = load_or_create_model_metadata(model_list)

# Update model metadata with tasks
model_metadata = update_model_metadata(model_metadata, df)

# Initialize and run ModelEvaluationSuite
evaluator = ModelEvaluationSuite(df, model_metadata)
evaluator.run_full_analysis()

# Example of collaborative input and model selection
user_input = "Translate 'Hello, world!' to French"
gpt4_suggestion = "For translation tasks, it's best to use a model fine-tuned on multilingual data. Consider using a lower temperature for more precise translations."

task_input = collaborative_input(user_input, gpt4_suggestion)
selected_model = select_model(task_input.text, df)

print(f"Selected Model: {selected_model}")
print(f"Task Input: {task_input.json()}")

# Here you would use the Bytez client to run the selected model
# model = client.model(selected_model)
# result = model.run(task_input.text)
# output = TaskOutput(generated_text=result, token_count=len(result.split()), model_used=selected_model)
# print(f"Task Output: {output.json()}")

# Terminal Output
"""
Basic Statistics:
ramRequired ramRequiredGB
count 14460.000000 14460.000000
mean 11.916321 0.011637
std 27.407836 0.026765
min 1.000000 0.000977
25% 1.000000 0.000977
50% 2.000000 0.001953
75% 11.000000 0.010742
max 244.000000 0.238281

Unique tasks:
tasks
text-generation 14326
summarization 96
translation 26
object-detection 4
video-classification 2
depth-estimation 2
audio-classification 1
question-answering 1
image-classification 1
token-classification 1
Name: count, dtype: int64

Top 10 publishers:
publisher
Helsinki-NLP 495
facebook 367
huggingtweets 203
AnonymousSub 132
microsoft 117
sentence-transformers 116
Yntec 113
google 111
MaziyarPanahi 85
SEBIS 79
Name: count, dtype: int64
User Input: Translate 'Hello, world!' to French
GPT-4o-mini Suggestion: For translation tasks, it's best to use a model fine-tuned on multilingual data. Consider using a lower temperature for more precise translations.
Please provide the final input based on the above suggestions: send it
Selected Model: 0-hero/Matter-0.1-Slim-7B-C
Task Input: {"text":"send it","max_tokens":100,"temperature":0.7}
"""