3DPyranet is a deep pyramidal neural network, based on biological pyramidal neurons developed in [1];
Check train.py file for the correct pipeline and model usage. Code uses Sparse Softmax Cross Entropy as loss function, it doesn't need One Hot Encoding.
Documentation can be found here:
https://3dpyranet.readthedocs.io/
- Python 3;
- Tensorflow 1.4+;
- TQDM;
- Numpy;
In requirements.txt check which version of tensorflow do you need! By default tensorflow-gpu is enabled
| Option | Type | Default | Description |
|---|---|---|---|
| evaluate_every | float | 1 | Number of epoch for each evaluation (decimals allowed) |
| test_milestones | list | 15,25,50 | Each epoch where performs test |
| save_checkpoint | boolean | False | Flag to save checkpoint or not |
| checkpoint_name | string | 3dpyranet.ckpt | Name of checkpoint file |
| Option | Type | Default | Description |
|---|---|---|---|
| train_path | string | // | Path to npy training set |
| train_labels_path | string | // | Path to npy training set labels |
| val_path | string | // | Path to npy val/test set |
| val_labels_path | string | // | Path to npy val/test set labels |
| save_path | string | // | Path where to save network model |
| Option | Type | Default | Description |
|---|---|---|---|
| batch_size | int | 100 | Batch size |
| depth_frames | int | 16 | Number of consecutive samples |
| height | int | 100 | Sample height |
| width | int | 100 | Sample width |
| in_channels | int | 1 | Sample channels |
| num_classes | int | 6 | Number of classes |
| Option | Type | Default | Description |
|---|---|---|---|
| feature_maps | int | 3 | Number of maps to use (strict model shares the number of maps in each layer) |
| learning_rate | float | 0.00015 | Learning rate |
| decay_steps | int | 15 | Number of epoch for each decay |
| decay_rate | float | 0.1 | Learning rate decay |
| max_steps | int | 50 | Maximum number of epoch to perform |
| weight_decay | float | None | L2 regularization lambda |
| Option | Type | Default | Description |
|---|---|---|---|
| optimizer | string | MOMENTUM | Optimization algorthim (GD - MOMENTUM - ADAM) |
| use_nesterov | boolean | False | Flag to use Nesterov Momentum (it works only with MOMENTUM optimizer) |
[1] Ullah, Ihsan, and Alfredo Petrosino. "Spatiotemporal features learning with 3DPyraNet." International Conference on Advanced Concepts for Intelligent Vision Systems. Springer, Cham, 2016.