Skip to content

Analytical model and simulation code for evaluating geographic greedy routing using a second-order absorbing Markov chain. Includes metrics for success ratio, hop stretch, and topological advance.

License

Notifications You must be signed in to change notification settings

ComNetsHH/geo-routing-amc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GeoRoutingAMC

A Second‑Order Absorbing Markov Chain for Geographic Routing in Aeronautical Communication Networks

DOI


Overview

GeoRoutingAMC implements:

  • Monte Carlo simulation of geographic greedy routing using k-hop neighborhood (Greedy‑k) across varying node equipage fractions
  • Second‑order absorbing Markov chain model of success ratio and hop‑stretch factor for Greedy‑k
  • Entropy and conditional entropy analyses of routing uncertainty
  • Distance‑vs‑hop heatmaps relating distance and hop count to ground station
  • Comparison of simulation vs. Markov‑model predictions

All compute‑intensive routines support HPC/Slurm.


Repository Layout

  • code/ — Python scripts
  • results/
    • csv_files/ — CSVs
    • figures/ — PDF plots
  • README.md — Usage guide

Installation

# 1. Clone
git clone https://github.com/ComNetsHH/geo-routing-amc.git
cd geo-routing-amc

# 2. Create & activate Conda env
conda create -n georouting python=3.10 pandas=2.3.1 scipy=1.15.3 numpy=1.26.4 matplotlib=3.10.0 networkx=3.4.2 seaborn=0.13.2 scikit-learn=1.7.1 -y
conda activate georouting

# 3. Run the full analysis pipeline
python code/py_run_all.py

About

Analytical model and simulation code for evaluating geographic greedy routing using a second-order absorbing Markov chain. Includes metrics for success ratio, hop stretch, and topological advance.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages