A Second‑Order Absorbing Markov Chain for Geographic Routing in Aeronautical Communication Networks
GeoRoutingAMC implements:
- Monte Carlo simulation of geographic greedy routing using k-hop neighborhood (Greedy‑k) across varying node equipage fractions
- Second‑order absorbing Markov chain model of success ratio and hop‑stretch factor for Greedy‑k
- Entropy and conditional entropy analyses of routing uncertainty
- Distance‑vs‑hop heatmaps relating distance and hop count to ground station
- Comparison of simulation vs. Markov‑model predictions
All compute‑intensive routines support HPC/Slurm.
code/— Python scriptsresults/csv_files/— CSVsfigures/— PDF plots
README.md— Usage guide
# 1. Clone
git clone https://github.com/ComNetsHH/geo-routing-amc.git
cd geo-routing-amc
# 2. Create & activate Conda env
conda create -n georouting python=3.10 pandas=2.3.1 scipy=1.15.3 numpy=1.26.4 matplotlib=3.10.0 networkx=3.4.2 seaborn=0.13.2 scikit-learn=1.7.1 -y
conda activate georouting
# 3. Run the full analysis pipeline
python code/py_run_all.py