Skip to content

Official PyTorch/Diffusers implementation of "RectifiedHR: Enable Efficient High Resolution Image Generation via Energy Rectification"

Notifications You must be signed in to change notification settings

EnVision-Research/RectifiedHR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RectifiedHR: Enable Efficient High Resolution Image Generation via Energy Rectification

Zhen Yang1* · Guibao Shen1* · Liang Hou2 · Mushui Liu4 · Luozhou Wang1 · Xin Tao2 · Pengfei Wan2 · Di Zhang2 · Yingcong Chen1,3✉
1HKUST(GZ) · 2KuaiShou Research · 3HKUST · 4Zhejiang University
*Both authors contributed equally. Corresponding author.
Paper Project website

Getting Started

  1. Create the environment and install the dependencies by running:
conda create -n RectifiedHR python=3.9
conda activate RectifiedHR
pip install diffusers==0.34.0
pip install transformers==4.46.2
pip install opencv-python>4.10.0
pip install torch==2.5.1
pip install accelerate==1.1.1
pip install einops==0.8.0
pip install ftfy==6.3.1
  1. Run with SDXL
python run_sdxl.py
  1. Run with WAN
python run_wan.py
  1. Change the hyperparameters

Edit the parameters in configs_sdxl.py or configs_wan.py to generate higher-quality images.

BibTeX

@article{yang2025rectifiedhr,
  title={Rectifiedhr: Enable efficient high-resolution image generation via energy rectification},
  author={Yang, Zhen and Shen, Guibao and Hou, Liang and Liu, Mushui and Wang, Luozhou and Tao, Xin and Wan, Pengfei and Zhang, Di and Chen, Ying-Cong},
  journal={arXiv e-prints},
  pages={arXiv--2503},
  year={2025}
}

About

Official PyTorch/Diffusers implementation of "RectifiedHR: Enable Efficient High Resolution Image Generation via Energy Rectification"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages