A unified monorepo combining the best open-source AI/ML tools and frameworks.
star-mono/
├── apps/ # User-facing applications
├── services/ # Microservices
├── packages/ # Shared libraries
├── trainer/ # ML training pipelines
├── vendor/ # Git subtree imports
├── external/ # Git submodule imports
└── notebooks/ # Jupyter notebooks
# Clone the repository
git clone --recursive https://github.com/FlexNetOS/star-mono.git
cd star-mono
# Install Rust toolchain
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# Build all services
cargo build --workspace
# Run the API gateway
cargo run --bin api-gateway
- API Gateway - Central API orchestration (Axum)
- Inference - ML model serving (Candle/llama.cpp)
- Agents - Autonomous agent coordination (Goose/Letta)
- Retrieval - RAG and vector search (Qdrant/Chroma)
- Data - Data processing pipelines (DataFusion/DuckDB)
- Pingora - Cloudflare's proxy framework
- Axum - Web framework
- Tokio - Async runtime
- Burn - Rust ML framework
- Candle - Rust tensor operations
- llama.cpp - LLM inference
- Letta - Memory-enhanced agents
- OpenHands - Code generation
- Browser-use - Web automation
Repositories are managed via:
- Git Subtrees - For vendored dependencies we modify
- Git Submodules - For large external projects
Update all dependencies:
# Update subtrees
./scripts/sync-subtrees.sh
# Update submodules
git submodule update --remote --recursive
Built-in observability with:
- OpenTelemetry tracing
- Structured logging
- Prometheus metrics (coming soon)
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests:
cargo test --workspace
- Submit a pull request
This project is dual-licensed under MIT and Apache-2.0. Individual vendored/external projects retain their original licenses.