Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dealing with encoder outputs with dimension > 3 when using the reshaper neck. #468

Merged
merged 3 commits into from
Mar 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions terratorch/models/necks.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,16 +141,30 @@ def __init__(self, channel_list: list[int], remove_cls_token=True, effective_tim
self.remove_cls_token = remove_cls_token
self.effective_time_dim = effective_time_dim

def collapse_dims(self, x):
"""
When the encoder output has more than 3 dimensions, is necessary to
reshape it.
"""
shape = x.shape
batch = x.shape[0]
e = x.shape[-1]
collapsed_dim = np.prod(x.shape[1:-1])

return x.reshape(batch, collapsed_dim, e)

def forward(self, features: list[torch.Tensor]) -> list[torch.Tensor]:
out = []
for x in features:
if self.remove_cls_token:
x_no_token = x[:, 1:, :]
else:
x_no_token = x
x_no_token = self.collapse_dims(x_no_token)
number_of_tokens = x_no_token.shape[1]
tokens_per_timestep = number_of_tokens // self.effective_time_dim
h = int(np.sqrt(tokens_per_timestep))

encoded = rearrange(
x_no_token,
"batch (t h w) e -> batch (t e) h w",
Expand Down
147 changes: 147 additions & 0 deletions tests/resources/configs/manufactured-finetune_satlas_upernet.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# lightning.pytorch==2.1.1
seed_everything: 42
trainer:
accelerator: auto
strategy: auto
devices: auto
num_nodes: 1
# precision: 16-mixed
logger:
class_path: TensorBoardLogger
init_args:
save_dir: tests/
name: all_ecos_random
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: EarlyStopping
init_args:
monitor: val/loss
patience: 100
max_epochs: 1
check_val_every_n_epoch: 1
log_every_n_steps: 20
enable_checkpointing: true
default_root_dir: tests/
data:
class_path: GenericNonGeoSegmentationDataModule
init_args:
batch_size: 2
num_workers: 4
train_transform:
#- class_path: albumentations.HorizontalFlip
# init_args:
# p: 0.5
#- class_path: albumentations.Rotate
# init_args:
# limit: 30
# border_mode: 0 # cv2.BORDER_CONSTANT
# value: 0
# # mask_value: 1
# p: 0.5
- class_path: ToTensorV2
dataset_bands:
- 0
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
- 1
- 2
- 3
- 4
output_bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
rgb_indices:
- 2
- 1
- 0
check_stackability: false
train_data_root: tests/resources/inputs
train_label_data_root: tests/resources/inputs
val_data_root: tests/resources/inputs
val_label_data_root: tests/resources/inputs
test_data_root: tests/resources/inputs
test_label_data_root: tests/resources/inputs
img_grep: "segmentation*input*.tif"
label_grep: "segmentation*label*.tif"
means:
- 547.36707
- 898.5121
- 1020.9082
- 2665.5352
- 2340.584
- 1610.1407
stds:
- 411.4701
- 558.54065
- 815.94025
- 812.4403
- 1113.7145
- 1067.641
no_label_replace: -1
no_data_replace: 0
num_classes: 2
model:
class_path: terratorch.tasks.SemanticSegmentationTask
init_args:
model_args:
decoder: UperNetDecoder
backbone_pretrained: True
backbone: satlas_swin_b_sentinel2_si_ms
# backbone: ssl4eol_resnet18_landsat_oli_tirs_toa_moco
# backbone_pretrain_img_size: 512
# decoder_scale_modules: True
# decoder_in_channels: 1024
decoder_channels: 256
# backbone_in_channels: 6
backbone_model_bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
backbone_out_indices:
- 1
- 3
- 5
- 7
# num_frames: 1
num_classes: 2
head_dropout: 0.1
head_channel_list:
- 256
necks:
- name: ReshapeTokensToImage
loss: ce
#class_weights:
#- 0.55
#- 0.45
#- 11.106234096692113
#- 0.7220430107526882
#- 0.6870916961826052
#- 0.47476477946375156
ignore_index: -1
freeze_backbone: true
freeze_decoder: false
model_factory: EncoderDecoderFactory
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 1.5e-5
weight_decay: 0.05
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss