Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add scale modules to upernet for vit backbone #62

Merged
merged 1 commit into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 30 additions & 103 deletions terratorch/models/decoders/upernet_decoder.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,10 @@
# Copyright contributors to the Terratorch project

import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn

"""
Adapted from https://github.com/yassouali/pytorch-segmentation/blob/master/models/upernet.py
"""


class ConvModule(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=0, inplace=False) -> None: # noqa: FBT002
super().__init__()
Expand All @@ -19,103 +15,6 @@ def __init__(self, in_channels, out_channels, kernel_size, padding=0, inplace=Fa
def forward(self, x):
return self.act(self.norm(self.conv(x)))


# class PSPModule(nn.Module):
# # In the original inmplementation they use precise RoI pooling
# # Instead of using adaptative average pooling
# def __init__(self, in_channels: int, bin_sizes: list[int] | None = None):
# super().__init__()
# if bin_sizes is None:
# bin_sizes = [1, 2, 3, 6]
# out_channels = in_channels // len(bin_sizes)
# self.stages = nn.ModuleList([self._make_stages(in_channels, out_channels, b_s) for b_s in bin_sizes])
# self.bottleneck = nn.Sequential(
# nn.Conv2d(
# in_channels + (out_channels * len(bin_sizes)),
# in_channels,
# kernel_size=3,
# padding=1,
# bias=False,
# ),
# nn.BatchNorm2d(in_channels),
# nn.ReLU(inplace=True),
# nn.Dropout2d(0.1),
# )

# def _make_stages(self, in_channels, out_channels, bin_sz):
# prior = nn.AdaptiveAvgPool2d(output_size=bin_sz)
# conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
# bn = nn.BatchNorm2d(out_channels)
# relu = nn.ReLU(inplace=True)
# return nn.Sequential(prior, conv, bn, relu)

# def forward(self, features):
# h, w = features.size()[2], features.size()[3]
# pyramids = [features]
# pyramids.extend(
# [F.interpolate(stage(features), size=(h, w), mode="bilinear", align_corners=True) for stage in self.stages]
# )
# output = self.bottleneck(torch.cat(pyramids, dim=1))
# return output


# def up_and_add(x, y):
# return F.interpolate(x, size=(y.size(2), y.size(3)), mode="bilinear", align_corners=True) + y


# class FPNFuse(nn.Module):
# def __init__(self, feature_channels=None, fpn_out=256):
# super().__init__()
# if feature_channels is None:
# feature_channels = [256, 512, 1024, 2048]
# if not feature_channels[0] == fpn_out:
# msg = f"First index of feature channel ({feature_channels[0]}) did not match fpn_out ({fpn_out})"
# raise Exception(msg)
# self.conv1x1 = nn.ModuleList([nn.Conv2d(ft_size, fpn_out, kernel_size=1) for ft_size in feature_channels[1:]])
# self.smooth_conv = nn.ModuleList(
# [nn.Conv2d(fpn_out, fpn_out, kernel_size=3, padding=1)] * (len(feature_channels) - 1)
# )
# self.conv_fusion = nn.Sequential(
# nn.Conv2d(
# len(feature_channels) * fpn_out,
# fpn_out,
# kernel_size=3,
# padding=1,
# bias=False,
# ),
# nn.BatchNorm2d(fpn_out),
# nn.ReLU(inplace=True),
# )

# def forward(self, features):
# features[1:] = [conv1x1(feature) for feature, conv1x1 in zip(features[1:], self.conv1x1, strict=False)]
# p = [up_and_add(features[i], features[i - 1]) for i in reversed(range(1, len(features)))]
# p = [smooth_conv(x) for smooth_conv, x in zip(self.smooth_conv, p, strict=False)]
# p = list(reversed(p))
# p.append(features[-1]) # P = [P1, P2, P3, P4]
# h, w = p[0].size(2), p[0].size(3)
# p[1:] = [F.interpolate(feature, size=(h, w), mode="bilinear", align_corners=True) for feature in p[1:]]

# x = self.conv_fusion(torch.cat(p, dim=1))
# return x


# class UperNetDecoder(nn.Module):
# def __init__(self, embed_dim: list[int]) -> None:
# super().__init__()
# self.embed_dim = embed_dim
# self.output_embed_dim = embed_dim[0]
# self.PPN = PSPModule(embed_dim[-1])
# self.FPN = FPNFuse(embed_dim, fpn_out=self.output_embed_dim)

# def forward(self, x: Tensor):
# x = [f.clone() for f in x]
# x[-1] = self.PPN(x[-1])
# x = self.FPN(x)

# return x


# Adapted from MMSegmentation
class UperNetDecoder(nn.Module):
"""UperNetDecoder. Adapted from MMSegmentation."""
Expand All @@ -126,6 +25,7 @@ def __init__(
pool_scales: tuple[int] = (1, 2, 3, 6),
channels: int = 256,
align_corners: bool = True, # noqa: FBT001, FBT002
scale_modules: bool = False
):
"""Constructor

Expand All @@ -134,10 +34,29 @@ def __init__(
pool_scales (tuple[int], optional): Pooling scales used in Pooling Pyramid
Module applied on the last feature. Default: (1, 2, 3, 6).
channels (int, optional): Channels used in the decoder. Defaults to 256.
align_corners (bool, optional): Whter to align corners in rescaling. Defaults to True.
align_corners (bool, optional): Wheter to align corners in rescaling. Defaults to True.
scale_modules (bool, optional): Whether to apply scale modules to the inputs. Needed for plain ViT.
Defaults to False.
"""
super().__init__()
self.embed_dim = embed_dim
self.scale_modules = scale_modules
if scale_modules:
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(embed_dim[0],
embed_dim[0] // 2, 2, 2),
nn.BatchNorm2d(embed_dim[0] // 2),
nn.GELU(),
nn.ConvTranspose2d(embed_dim[0] // 2,
embed_dim[0] // 4, 2, 2))
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(embed_dim[1],
embed_dim[1] // 2, 2, 2))
self.fpn3 = nn.Sequential(nn.Identity())
self.fpn4 = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2))
self.embed_dim = [embed_dim[0] // 4, embed_dim[1] // 2, embed_dim[2], embed_dim[3]]
else:
self.embed_dim = embed_dim

self.output_embed_dim = channels
self.channels = channels
self.align_corners = align_corners
Expand Down Expand Up @@ -192,6 +111,14 @@ def forward(self, inputs):
feats (Tensor): A tensor of shape (batch_size, self.channels,
H, W) which is feature map for last layer of decoder head.
"""

if self.scale_modules:
scaled_inputs = []
scaled_inputs.append(self.fpn1(inputs[0]))
scaled_inputs.append(self.fpn2(inputs[1]))
scaled_inputs.append(self.fpn3(inputs[2]))
scaled_inputs.append(self.fpn4(inputs[3]))
inputs = scaled_inputs
# build laterals
laterals = [lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(inputs))
Expand Down
Loading
Loading