This is a demo code of the proposed method in the following reference:
S. Takemoto, K. Naganuma, and S. Ono, ``Spatio-Spectral-Structure-Tensor-Total-Variation-for-Hyperspectral-Image-Denoising-and-Destriping,'' IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025.
Update history: 10, Aug. 2025: v1.0
For more information, see the following
- Project website: https://www.mdi.c.titech.ac.jp/publications/s3ttv
- Preprint paper: https://arxiv.org/abs/2404.03313
- Setting parameters
- Choose the image (JasperRidge, PaviaUniversity, or Beltsville)
- Adjust the parameters
params.rho: parameter for the radii of the noise termsparams.blocksize: Block size of spatio-spectral structure tensorparams.stopcri: Stopping criterionparams.maxiter: Maximum number of iterationsparams.disprate: Period to display intermediate results
- Set as
use_GPU= 1 if you use GPU. - Set as
use_fast= 1 if you use fast convergence version.
- Run
main_S3TTV.m
If you use this code, please cite the following paper:
@ARTICLE{takemoto2025spatiospectral,
author={Takemoto, Shingo and Naganuma, Kazuki and Ono, Shunsuke},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
title={Spatio-Spectral Structure Tensor Total Variation for Hyperspectral Image Denoising and Destriping},
year={2025},
volume={18},
number={},
pages={19157-19175},
doi={10.1109/JSTARS.2025.3586779}
}
This repository also supports comparison with several existing denoising and destriping methods.
To evaluate QRNN3D [1], follow the steps below:
-
Download the official code from https://github.com/Vandermode/QRNN3D
-
Download the fine-tuned checkpoint (Pavia Centre) from Google Drive
-
Run
hsi_test.py.
To compare with other methods (SSTV [2], HSSTV [3], l0-l1HTV [4], STV [5], SSST [6], LRTDTV [7], FGSLR [8], TPTV [9], and FastHyMix [10]):
-
Download and extract the following repositories, and place each extracted folder into the
compared_methods/directory: -
Run
main_with_comparisons.m
- Choose the target image (
JasperRidge,PaviaUniversity, orBeltsville) - Enable each method by setting
"enable"totruein the corresponding section - Adjust parameters for each method
- Run the result visualization script:
plot_result.m
- Use
show_bandto select the band index for visualization - The script compares results in
result/<condition>/<name_method>/and selects the best result for each method
[1] K. Wei, Y. Fu, and H. Huang, ``3-D quasi-recurrent neural network for hyperspectral image denoising,'' IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 363--375, 2021.
[2] H. K. Aggarwal and A. Majumdar, ``Hyperspectral image denoising using spatio-spectral total variation,'' IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 442--446, 2016.
[3] S. Takeyama, S. Ono, and I. Kumazawa, ``A constrained convex optimization approach to hyperspectral image restoration with hybrid spatio-spectral regularization,'' Remote Sens., vol. 12, no. 21, 2020.
[4] M. Wang, Q. Wang, J. Chanussot, and D. Hong, ``$l_0$-$l_1$ hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing,'' IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7695--7710, 2021.
[5] S. Lefkimmiatis, A. Roussos, P. Maragos, and M. Unser, ``Structure tensor total variation,'' SIAM J. Imag. Sci., vol. 8, no. 2, pp. 1090--1122, 2015.
[6] R. Kurihara, S. Ono, K. Shirai, and M. Okuda, ``Hyperspectral image restoration based on spatio-spectral structure tensor regularization,'' in Proc. Eur. Signal Process. Conf. (EUSIPCO), 2017, pp. 488--492.
[7] Y. Wang, J. Peng, Q. Zhao, Y. Leung, X. Zhao, and D. Meng, ``Hyperspectral image restoration via total variation regularized low-rank tensor decomposition,'' IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 4, pp. 1227--1243, 2018.
[8] Y. Chen, T. Huang, W. He, X. Zhao, H. Zhang, and J. Zeng, ``Hyperspectral image denoising using factor group sparsity-regularized nonconvex low-rank approximation,'' IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1--16, 2022.
[9] Y. Chen, W. Cao, L. Pang, J. Peng, and X. Cao, ``Hyperspectral image denoising via texture-preserved total variation regularizer,'' IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1--14, 2023.
[10] L. Zhuang and M. K. Ng, ``FastHyMix: Fast and parameter-free hyperspectral image mixed noise removal,'' IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4702--4716, 2023.