- Upload Datasets (Expected before UTC 2025.09.1)
git clone https://github.com/OpenImagingLab/4DSloMo.git
cd 4DSloMo
conda create -n 4dslomo python=3.10 -y
conda activate 4dslomo
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
4DSloMo relies on two sets of weights. Please download them and place them in the ./checkpoints
folder.
python train.py --config ./configs/default.yaml --model_path ./output/dance_demo10 --source_path ./datasets/dance_demo10
# Render 4D Gaussian Splatting
python render.py --model_path ./output/dance_demo10/ --loaded_pth=./output/dance_demo10/chkpnt7000.pth
# Prepare data for artifact-fix model
python process_video.py --input_folder "./output/dance_demo10/test/ours_None/" --max_frames 33
# Inference artifact-fix model
## Note: 5 denoising steps can achieve about 80% of the final quality; use 50 steps for the best results.
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 test_lora.py --input_folder ./output/dance_demo10 --output_folder ./datasets/dance_demo10_wan/ --model_path ./checkpoints/4DSloMo_LoRA.ckpt --num_inference_steps 5
# Prepare camera pose and timestamp
cp ./datasets/dance_demo10/transforms_test_demo.json ./datasets/dance_demo10_wan/transforms_test.json; cp ./datasets/dance_demo10/transforms_train_stage2.json ./datasets/dance_demo10_wan/transforms_train.json; cp ./datasets/dance_demo10/points3d.ply ./datasets/dance_demo10_wan
python train.py --config ./configs/default.yaml --model_path ./output/dance_demo10_wan --source_path ./datasets/dance_demo10_wan
Thanks to these great repositories: 4D Gaussian Splatting, Wan2.1 and DiffSynth-Studio.
If you find our work helpful, please cite it:
@article{chen20254dslomo,
title={4DSloMo: 4D Reconstruction for High Speed Scene with Asynchronous Capture},
author={Chen, Yutian and Guo, Shi and Yang, Tianshuo and Ding, Lihe and Yu, Xiuyuan and Gu, Jinwei and Xue, Tianfan},
journal={arXiv preprint arXiv:2507.05163},
year={2025}
}