Machine learning backbone for the Ark Robotics Framework, providing core models, algorithms, and tools to enable intelligent perception, decision-making, and control in robotic applications.
- Create and activate conda/virtual environment.
conda create -n ark_env python=3.11 -y
conda activate ark_env- Clone repository.
- (ssh) `git clone [email protected]:Robotics-Ark/ark_ml.git`
- (https) `git clone https://github.com/Robotics-Ark/ark_ml.git`- Install ark_ml framework.
pip install -e ark_ml- Install other Ark modules. The ML backbone depends on additional Ark modules. Make sure the following are also installed:
pip install -e ark_framework
pip install -e ark_typesUse the trained model for rollouts:
HYDRA_FULL_ERROR=1 arkml-policy algo=<ml_algorithm> \
algo.model.model_path=path/to/the/model \Start the policy service to get machine learning based action prediction
PolicyName/policy/stopPolicyName can be set through command line by using below command
HYDRA_FULL_ERROR=1 arkml-policy algo=<ml_algorithm> \
algo.model.model_path=path/to/the/model \
policy_node_name=policy_nameStop the policy service to pause machine learning based action prediction
PolicyName/policy/stopReset the policy state
PolicyName/policy/stoppredict next action
PolicyName/policy/predictA client service can be started using below command
python ark_ml/arkml/examples/franka_pick_place/franka_pick_place.py --max_step 1000 --n_episodes 5 --step_sleep 0.1Train a model with a dataset:
CUDA_VISIBLE_DEVICES=0 HYDRA_FULL_ERROR=1 \
arkml.tools.train algo=<ml_algorithm> \
data.dataset_path=/path/to/dataset \
output_dir=/output/path