This project processes meteorological wind data by converting units, resampling data, and identifying high wind speed instances. The final output provides a summary of maximum wind speeds at specific intervals.
-
Data Loading and Conversion
- Loaded wind data from a CSV file.
- Converted wind speed values from knots (kt) to kilometers per hour (km/h).
- Rounded converted values to two decimal places.
-
Data Cleaning and Preparation
- Selected relevant columns:
DATE,TIME(UTC),WIND_MAX/GUST_10m(km/hr),WIND_SPEED_10m(km/hr). - Merged
DATEandTIME(UTC)into a singleTIMEcolumn. - Set
TIMEas the DataFrame index. - Removed redundant
DATEandTIME(UTC)columns.
- Selected relevant columns:
-
Resampling and Analysis
- Resampled data at 3-hour intervals to find maximum wind speeds.
- Created a binary
max_speedcolumn to flag instances where wind speed exceeded 50 km/h. - Extracted and formatted
MonthandTimeinformation for easier analysis.
-
Data Aggregation
- Grouped data by
MonthandTimeto sum high wind speed occurrences.
- Grouped data by
-
Final Output
- Generated a summary DataFrame showing the number of high wind speed events for each month and time interval.
- Saved the processed data to a new CSV file (
Final_p_Met_data_1.csv).
- Python libraries:
pandas,numpy,matplotlib,seaborn,datetime
Met_data_1.csv: Original datasetupdated_Met_data_1.csv: Intermediate processed datasetFinal_p_Met_data_1.csv: Final output dataset
- Ensure all dependencies are installed.
- Run the provided Python script to process the data.
- Review the output CSV file for summarized wind speed information.
Satyarth Ranjan