A high-performance async Python SDK for the ProjectX Trading Platform Gateway API. This library enables developers to build sophisticated trading strategies and applications by providing comprehensive async access to futures trading operations, historical market data, real-time streaming, technical analysis, and advanced market microstructure tools with enterprise-grade performance optimizations.
Note: This is a client library/SDK, not a trading strategy. It provides the tools and infrastructure to help developers create their own trading strategies that integrate with the ProjectX platform.
ProjectX is a cutting-edge web-based futures trading platform that provides:
- TradingView Charts: Advanced charting with hundreds of indicators
- Risk Controls: Auto-liquidation, profit targets, daily loss limits
- Unfiltered Market Data: Real-time depth of market data with millisecond updates
- REST API: Comprehensive API for custom integrations
- Mobile & Web Trading: Native browser-based trading platform
This Python SDK acts as a bridge between your trading strategies and the ProjectX platform, handling all the complex API interactions, data processing, and real-time connectivity.
Latest Update (v3.1.4): Fixed critical WebSocket connection issue with proper mixin initialization in ProjectXRealtimeClient, ensuring stable real-time data streaming.
- Fixed: WebSocket connection error (
_use_batching
attribute missing) - Improved: Proper initialization of all mixins in ProjectXRealtimeClient
- Enhanced: More robust real-time connection handling
- π¦ MAJOR POLICY CHANGE: Project has reached stable production status
- Now maintaining backward compatibility between minor versions
- Deprecation warnings will be provided for at least 2 minor versions
- Breaking changes only in major releases (4.0.0+)
- Strict semantic versioning (MAJOR.MINOR.PATCH)
- Fixed: Test suite compatibility with optimized cache implementation
- Fixed: Datetime serialization/deserialization in cached DataFrames
- Fixed: BatchedWebSocketHandler flush and race condition issues
- Fixed: SignalR mock methods in connection management tests
- Memory-Mapped Overflow Storage: Automatic overflow to disk when memory limits reached
- orjson Integration: 2-3x faster JSON serialization/deserialization
- WebSocket Message Batching: Reduced overhead for high-frequency data
- Advanced Caching: msgpack serialization with lz4 compression
- Optimized DataFrames: 20-40% faster Polars operations
- Connection Pooling: 30-50% faster API responses
- Automatic Overflow: Data automatically overflows to disk at 80% memory threshold
- Transparent Access: Seamless retrieval from both memory and disk storage
- Sliding Windows: Efficient memory usage with configurable limits
- Smart Compression: Automatic compression for data >1KB
- TradingSuite Class: Unified entry point for simplified SDK usage
- One-line Initialization: TradingSuite.create() handles all setup
- Feature Flags: Easy enabling of optional components
- Context Manager Support: Automatic cleanup with async with statements
- Unified Event Handling: Built-in EventBus for all components
Note: Version 3.0+ introduced TradingSuite, replacing factory functions. From v3.1.1 onward, we maintain strict backward compatibility between minor versions. See migration guide below for upgrading from v2.x.
- Concurrent Operations: Execute multiple API calls simultaneously
- Non-blocking I/O: Handle real-time data feeds without blocking
- Better Resource Usage: Single thread handles thousands of concurrent operations
- WebSocket Native: Perfect for real-time trading applications
- Modern Python: Leverages Python 3.12+ async features
If you're upgrading from v2.x, key changes include TradingSuite replacing factories:
# Old (v2.x)
suite = await create_initialized_trading_suite(\"MNQ\", client)
# New (v3.0+)
suite = await TradingSuite.create(\"MNQ\")
- Authentication & Account Management: Multi-account support with async session management
- Order Management: Place, modify, cancel orders with real-time async updates
- Position Tracking: Real-time position monitoring with P&L calculations
- Market Data: Historical and real-time data with async streaming
- Risk Management: Portfolio analytics and risk metrics
- 58+ Technical Indicators: Full TA-Lib compatibility with Polars optimization including new pattern indicators
- Level 2 OrderBook: Depth analysis, iceberg detection, market microstructure
- Real-time WebSockets: Async streaming for quotes, trades, and account updates
- Performance Optimized: Connection pooling, intelligent caching, memory management
- Pattern Recognition: Fair Value Gaps, Order Blocks, and Waddah Attar Explosion indicators
- Enterprise Error Handling: Production-ready error handling with decorators and structured logging
- Comprehensive Testing: High test coverage with async-safe testing patterns
uv add project-x-py
pip install project-x-py
git clone https://github.com/yourusername/project-x-py.git
cd project-x-py
uv sync # or: pip install -e ".[dev]"
import asyncio
from project_x_py import TradingSuite
async def main():
suite = await TradingSuite.create(\"MNQ\")
print(f\"Connected to account: {suite.client.account_info.name}\")
print(f\"Trading {suite.instrument.name} - Tick size: ${suite.instrument.tickSize}\")
data = await suite.client.get_bars(\"MNQ\", days=5)
print(f\"Retrieved {len(data)} bars\")
positions = await suite.positions.get_all_positions()
for position in positions:
print(f\"Position: {position.size} @ ${position.averagePrice}\")
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
The easiest way to get started with a complete trading setup:
import asyncio
from project_x_py import TradingSuite, EventType
async def main():
suite = await TradingSuite.create(
\"MNQ\",
timeframes=[\"5min\", \"15min\", \"1hr\"],
features=[\"orderbook\", \"risk_manager\"]
)
# Register event handlers
@suite.events.on(EventType.NEW_BAR)
async def on_new_bar(event):
print(f\"New {event.data['timeframe']} bar: {event.data['close']}\")
@suite.events.on(EventType.TRADE_TICK)
async def on_trade(event):
print(f\"Trade: {event.data['size']} @ {event.data['price']}\")
# Access components
data = await suite.data.get_data(\"5min\")
orderbook = suite.orderbook # Available since feature enabled
order_manager = suite.orders
position_manager = suite.positions
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
import asyncio
from project_x_py import TradingSuite
async def on_tick(tick_data):
print(f\"Price: ${tick_data['price']}\")
async def main():
suite = await TradingSuite.create(\"MNQ\")
suite.data.add_tick_callback(on_tick)
current_price = await suite.data.get_current_price()
response = await suite.orders.place_bracket_order(
contract_id=suite.instrument.id,
side=0, # Buy
size=1,
entry_price=current_price,
stop_loss_price=current_price - 10,
take_profit_price=current_price + 15
)
print(f\"Order placed: {response}\")
await asyncio.sleep(60)
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
Set environment variables:
export PROJECT_X_API_KEY="your_api_key"
export PROJECT_X_USERNAME="your_username"
Or use a config file (~/.config/projectx/config.json
):
{
"api_key": "your_api_key",
"username": "your_username",
"api_url": "https://api.topstepx.com/api",
"websocket_url": "wss://api.topstepx.com",
"timezone": "US/Central"
}
The underlying async client, accessible via suite.client:
suite = await TradingSuite.create(\"MNQ\")
# Use suite.client for direct API operations
Async order management via suite.orders:
await suite.orders.place_market_order(suite.instrument.id, side=0, size=1)
await suite.orders.modify_order(order_id, new_price=100.50)
await suite.orders.cancel_order(order_id)
Async position tracking and analytics:
position_manager = suite["position_manager"]
positions = await position_manager.get_all_positions()
pnl = await position_manager.get_portfolio_pnl()
await position_manager.close_position(contract_id)
Async multi-timeframe data management:
data_manager = suite["data_manager"]
await data_manager.initialize(initial_days=5)
data = await data_manager.get_data("15min")
current_price = await data_manager.get_current_price()
Async Level 2 market depth analysis:
orderbook = suite["orderbook"]
spread = await orderbook.get_bid_ask_spread()
imbalance = await orderbook.get_market_imbalance()
icebergs = await orderbook.detect_iceberg_orders()
All 58+ indicators work with async data pipelines:
import polars as pl
from project_x_py.indicators import RSI, SMA, MACD, FVG, ORDERBLOCK, WAE
# Get data - multiple ways
data = await client.get_bars("ES", days=30) # Last 30 days
# Or use specific time range (v3.1.5+)
from datetime import datetime
start = datetime(2025, 1, 1, 9, 30)
end = datetime(2025, 1, 10, 16, 0)
data = await client.get_bars("ES", start_time=start, end_time=end)
# Apply traditional indicators
data = data.pipe(SMA, period=20).pipe(RSI, period=14)
# Apply pattern recognition indicators
data_with_fvg = FVG(data, min_gap_size=0.001, check_mitigation=True)
data_with_ob = ORDERBLOCK(data, min_volume_percentile=70)
data_with_wae = WAE(data, sensitivity=150)
# Or use class-based interface
from project_x_py.indicators import OrderBlock, FVG, WAE
ob = OrderBlock()
data_with_ob = ob.calculate(data, use_wicks=True)
- Fair Value Gap (FVG): Identifies price imbalance areas
- Order Block: Detects institutional order zones
- Waddah Attar Explosion (WAE): Strong trend and breakout detection
The examples/
directory contains comprehensive async examples:
- 01_basic_client_connection.py - Async authentication and basic operations
- 02_order_management.py - Async order placement and management
- 03_position_management.py - Async position tracking and P&L
- 04_realtime_data.py - Real-time async data streaming
- 05_orderbook_analysis.py - Async market depth analysis
- 06_multi_timeframe_strategy.py - Async multi-timeframe trading
- 07_technical_indicators.py - Using indicators with async data
- 08_order_and_position_tracking.py - Integrated async monitoring
- 09_get_check_available_instruments.py - Interactive async instrument search
- 12_simplified_strategy.py - NEW: Simplified strategy using auto-initialization
- 13_factory_comparison.py - NEW: Comparison of factory function approaches
Use parameters in TradingSuite.create()
Configure caching and memory limits:
# In OrderBook
orderbook = OrderBook(
instrument="ES",
max_trades=10000, # Trade history limit
max_depth_entries=1000, # Depth per side
cache_ttl=300 # 5 minutes
)
# In RealtimeDataManager
data_manager = RealtimeDataManager(
instrument="NQ",
max_bars_per_timeframe=1000,
tick_buffer_size=1000
)
All async operations use typed exceptions with automatic retry and logging:
from project_x_py.exceptions import (
ProjectXAuthenticationError,
ProjectXOrderError,
ProjectXRateLimitError
)
from project_x_py.utils import configure_sdk_logging
# Configure logging for production
configure_sdk_logging(
level=logging.INFO,
format_json=True, # JSON logs for production
log_file="/var/log/projectx/trading.log"
)
try:
async with ProjectX.from_env() as client:
await client.authenticate() # Automatic retry on network errors
except ProjectXAuthenticationError as e:
# Structured error with context
print(f"Authentication failed: {e}")
except ProjectXRateLimitError as e:
# Automatic backoff already attempted
print(f"Rate limit exceeded: {e}")
The SDK uses decorators for consistent error handling:
# All API methods have built-in error handling
@handle_errors("place order")
@retry_on_network_error(max_attempts=3)
@validate_response(required_fields=["orderId"])
async def place_order(self, ...):
# Method implementation
# Error: "JWT token is required but not available from client"
# Solution: Ensure client is authenticated before creating suite
async with ProjectX.from_env() as client:
await client.authenticate() # Don't forget this!
suite = await create_initialized_trading_suite("MNQ", client)
# Error: "Instrument MNQ not found"
# Solution: Verify instrument symbol is correct
# Common symbols: "MNQ", "MES", "MGC", "ES", "NQ"
# If initialization times out, try manual setup with error handling:
try:
suite = await create_trading_suite(
instrument="MNQ",
project_x=client,
auto_connect=False
)
await suite["realtime_client"].connect()
except Exception as e:
print(f"Connection failed: {e}")
# The suite automatically manages memory, but for long-running strategies:
# 1. Use reasonable initial_days (3-7 is usually sufficient)
# 2. The data manager automatically maintains sliding windows
# 3. OrderBook has built-in memory limits
# The SDK handles rate limiting automatically, but if you encounter issues:
# 1. Reduce concurrent API calls
# 2. Add delays between operations
# 3. Use batch operations where available
As of v3.1.1, this project follows strict Semantic Versioning:
- PATCH (x.x.N): Bug fixes only, no API changes
- MINOR (x.N.x): New features, backward compatible, deprecation warnings added
- MAJOR (N.x.x): Breaking changes allowed, deprecated features removed
- Features marked as deprecated will include clear migration instructions
- Deprecated features maintained for at least 2 minor versions
- Removal only occurs in major version releases
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
# Clone repository
git clone https://github.com/yourusername/project-x-py.git
cd project-x-py
# Install with dev dependencies
uv sync
# Run tests
uv run pytest
# Format code
uv run ruff format .
# Lint
uv run ruff check .
This project is licensed under the MIT License - see LICENSE file for details.
This SDK is for educational and development purposes. Trading futures involves substantial risk of loss and is not suitable for all investors. Past performance is not indicative of future results. Always test your strategies thoroughly before using real funds.