Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added the Active Disturbance Rejection Control (ADRC) Algorithm #12648

Open
wants to merge 11 commits into
base: master
Choose a base branch
from
Empty file added control_algorithms/__init__.py
Empty file.
95 changes: 95 additions & 0 deletions control_algorithms/adrc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
"""
Active Disturbance Rejection Control (ADRC) is a robust control strategy
that estimates and compensates for disturbances in real-time without needing
an explicit mathematical model of the system.

It consists of:
1. Tracking Differentiator (TD) - Smooths the reference signal
2. Extended State Observer (ESO) - Estimates system states and disturbances
3. Nonlinear State Error Feedback (NLSEF) - Generates the control signal

Refer - https://en.wikipedia.org/wiki/Active_disturbance_rejection_control
"""


class ADRC:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Optional: This might be simpler as a dataclass. https://docs.python.org/3/library/dataclasses.html

def __init__(
self,
error_correction: float,
disturbance: float,
acceleration: float,
target: float = 0.0,
) -> None:
"""
Initialize the ADRC controller.

:param error_correction: Gain for error correction in ESO
:param disturbance: Gain for disturbance estimation in ESO
:param acceleration: Gain for acceleration estimation in ESO
:param target: Desired target value (default: 0.0)
>>> adrc = ADRC(1.0, 2.0, 3.0, 5.0)
>>> adrc.error_correction, adrc.disturbance, adrc.acceleration, adrc.target
(1.0, 2.0, 3.0, 5.0)
>>> adrc.system_output, adrc.system_velocity, adrc.total_disturbance
(0.0, 0.0, 0.0)
"""
self.error_correction = error_correction
self.disturbance = disturbance
self.acceleration = acceleration
self.target = target

self.system_output = 0.0 # Estimated system output
self.system_velocity = 0.0 # Estimated system velocity
self.total_disturbance = 0.0 # Estimated total disturbance

def calculate_control_output(self, measured_value: float, dt: float) -> float:
"""
Compute the control signal based on error estimation and disturbance rejection.

:param measured_value: The current process variable
:param dt: Time difference since the last update
:return: Control output
>>> adrc = ADRC(10.0, 5.0, 2.0)
>>> (
... adrc.system_output,
... adrc.system_velocity,
... adrc.total_disturbance,
... ) = (1.0, 2.0, 3.0)
>>> adrc.calculate_control_output(0.5, 0.1) # Simple test with dt=0.1
0.04999999999999982
"""
# Extended State Observer (ESO) Update
error = self.system_output - measured_value
self.system_output += dt * (
self.system_velocity - self.error_correction * error
)
self.system_velocity += dt * (self.total_disturbance - self.disturbance * error)
self.total_disturbance -= self.acceleration * error

# Control Law (Nonlinear State Error Feedback - NLSEF)
control_output = self.system_velocity - self.total_disturbance
return control_output

def reset(self) -> None:
"""
Reset the estimated states to zero.

>>> adrc = ADRC(1.0, 2.0, 3.0)
>>> (
... adrc.system_output,
... adrc.system_velocity,
... adrc.total_disturbance,
... ) = (1.1, 2.2, 3.3)
>>> adrc.reset()
>>> adrc.system_output, adrc.system_velocity, adrc.total_disturbance
(0.0, 0.0, 0.0)
"""
self.system_output = 0.0
self.system_velocity = 0.0
self.total_disturbance = 0.0


if __name__ == "__main__":
import doctest

doctest.testmod()