This repository contains the interactive digital appendix for the doctoral dissertation:
Narratologies of Transmedia Networks
Author: Richárd Fejes
Supervisor: Dr. Gábor Tamás Molnár
Eötvös Loránd University Doctoral School of Literary Studies, 2025
The appendix provides interactive charts, tables, and network visualizations derived from the research dataset. These tools allow users to explore, sort, and analyze narrative and transmedia network data.
-
index.html
Main landing page for the appendix. LoadsEMH_cleaned_nodes_2025.xlsxand displays it as an interactive searchable table using DataTables. -
chart1.html
Displays a pie chart of Percentages of Narrative Instance Ownership (Figure 1).- Data source:
emh_data.json - Processing: Groups owners with less than 3% share into an "Other" category.
- Built with Chart.js.
- Data source:
-
parse_xlsx.py
Python script to:- Load
EMH_cleaned_nodes_2025.xlsx - Clean the
ownerfield (trim whitespace, remove empty values) - Export to JSON (
emh_data.json)
- Load
-
emh_data.json
Processed dataset used by charts for visualization. -
EMH_cleaned_nodes_2025.xlsx
Primary dataset for EverymanHYBRID node data. -
Other HTML files (e.g.,
chart2.html,chart3.html,chart4.html,chart5.html,the_beast_map.html, etc.)
Each corresponds to a separate figure in the appendix, such as:- Fluctuations of narrative voices (absolute and percentage)
- Platform/channel usage
- Interactive network maps
- Node/edge tables for EverymanHYBRID and The Beast ARG
-
Figure 1: Percentages of Narrative Instance Ownership
Formula:(owner count / total count) × 100%Minor owners (<3%) grouped into "Other".
-
Figures 2–3: Fluctuation of Dominating Voices (Absolute / Percentages)
-
Figures 4–5: Channel Usage (Absolute / Percentages)
-
Network Maps: Interactive Cytoscape.js-based visualizations with tooltips, filtering, and grouping.
-
Data Tables: Searchable/sortable tables for node and edge data.
Frontend:
- HTML5, CSS, JavaScript
Libraries:
- Chart.js — Data visualizations
- DataTables — Interactive tables
- Cytoscape.js — Network visualizations
- SheetJS — Excel parsing
Backend/Data Processing:
- Python + Pandas (
parse_xlsx.py) for data cleaning and transformation.
Clone the repository:
git clone https://github.com/afejesrichard/elte.transmedia.gitOpen any .html file in your browser.
Note: Some visualizations require running from a local HTTP server (e.g.,
python -m http.server) due to browser fetch restrictions.
To regenerate emh_data.json from the Excel file:
pip install pandas openpyxl
python parse_xlsx.pyThis repository and its contents are part of the doctoral dissertation Narratologies of Transmedia Networks.
Please contact the author for permissions regarding reuse.