This project is a demonstration of creating semantic trends embeddings from Word2Vec models. The project is divided into two main sections: healthcare and New York Times (NYT) articles. The healthcare section is further divided into two subsections: nursing and healthcare. The project is structured in a way that the user can easily add new sections and subsections. The project is designed to be scalable and flexible.
-
Clone the repository
git clone https://github.com/angadsinghsandhu/trends-demo.git
-
Create a virtual environment
pip install uv uv venv
-
Install the requirements
uv sync
-
Run the application
uv run python manage.py runserver
-
Access the application locally on your the browser
http://127.0.0.1:8000/ or http://0.0.0.0:8000/
[TODO]
update the application by making migrations using the following command:
python manage.py makemigrations
python manage.py migrate
Rebuild Docker image using the updated Dockerfile and run the container using the following commands:
docker build --no-cache -t trends-demo .
# docker-compose up --build
docker run -p 8000:8000 trends-demo
run docker shell
docker exec -it <container_id> /bin/bash
- Paper Pre-Print: ArXiv Link
- MIND Lab Website: CLICK HERE
- Our LinkedIn Profiles:
- Our GitHub Links:
- My Medium Blogs: Medium: Angad
- My Twitter Profiles: Twitter: Angad
- Professor Agrawala's Website: LINK
.
├── .vscode/
├── home/
│ ├── helper/
│ │ ├── trends/
│ │ │ ├── healthcare/
│ │ │ │ ├── data/
│ │ │ │ └── models/
│ │ │ ├── nursing/
│ │ │ │ ├── data/
│ │ │ │ └── models/
│ │ │ ├── nyt/
│ │ │ │ ├── data/
│ │ │ │ └── models/
├── static/
│ ├── assets/
│ │ ├── css/
│ │ ├── js/
│ │ ├── sass/
│ │ │ ├── base/
│ │ │ ├── components/
│ │ │ ├── layout/
│ │ │ └── libs/
│ │ ├── webfonts/
│ ├── csv/
│ ├── images/
├── templates/