Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Finetune setup #5

Merged
merged 102 commits into from
May 3, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
102 commits
Select commit Hold shift + click to select a range
3881017
initial commit; working alexnet finetuner
ankitdhall Mar 6, 2019
b7725b7
setup tensorboard logging; refactor
ankitdhall Mar 7, 2019
b18fc45
add experiments in gitignore
ankitdhall Mar 7, 2019
269d6cf
add initial code to save precision-recall curves
ankitdhall Mar 8, 2019
7a5e914
add interval based eval; refactor; add mAP score
ankitdhall Mar 9, 2019
de58b7f
split experiment framework; add weight saving, loading
ankitdhall Mar 10, 2019
60c1662
add initial flush to .md functionality
ankitdhall Mar 10, 2019
6551167
add additional md func; hrule, text, image
ankitdhall Mar 11, 2019
edb9451
correct paths; allow bullets in text
ankitdhall Mar 12, 2019
6ce0ffa
calculate per class metrics
ankitdhall Mar 12, 2019
4574068
add load_wt as optional flag
ankitdhall Mar 12, 2019
70d1d09
load_wt flag
ankitdhall Mar 12, 2019
2fd1542
correct typo
ankitdhall Mar 12, 2019
c3c5b2d
add f1-score vs threshold calc
ankitdhall Mar 14, 2019
8735533
add labelmap; separate multi-class handler; modify CIFAR10 for hierar…
ankitdhall Mar 14, 2019
cd65f72
add multi label evaluation
ankitdhall Mar 16, 2019
93e25ef
overload funcs; modify labelmap
ankitdhall Mar 16, 2019
fea5a6d
initial requirements.txt commit
ankitdhall Mar 16, 2019
cd6fd56
add requirements for python3.6
ankitdhall Mar 16, 2019
56335cf
add code to make it work on GPU
Mar 16, 2019
bcc9548
refactor dataset length; remove prints
ankitdhall Mar 16, 2019
7fa8808
debug tensor access on CPU
ankitdhall Mar 16, 2019
e7da6a7
debug tensor access on CPU
Mar 16, 2019
584459b
implement exact match calc correctly
ankitdhall Mar 17, 2019
19b4b32
add debug mode; split data 80-10-10
ankitdhall Mar 18, 2019
b8c7a4b
change best_acc to best_score; replace scores with macro and micro avgs
ankitdhall Mar 19, 2019
591e38e
add macro and micro score; p, r, f1 for test set (independently calcu…
ankitdhall Mar 19, 2019
18c962f
show if running in DEBUG mode
ankitdhall Mar 19, 2019
eb8f14e
add command line arguments; save config used to run the experiment
ankitdhall Mar 19, 2019
0ac8018
refactor; add class to calculate and set optimal thresh for single th…
ankitdhall Mar 21, 2019
8b6eb8a
add argument for eval type
ankitdhall Mar 21, 2019
c117ce8
add resnet18 as option
ankitdhall Mar 24, 2019
3ce3298
add resnet50
ankitdhall Mar 24, 2019
afbebf9
add vgg as option
ankitdhall Mar 25, 2019
6d9ca4e
use experiment_dir args
ankitdhall Mar 25, 2019
d9239b8
add command line arguments to freeze weights
ankitdhall Mar 25, 2019
a0f5688
separate training and setting trainable parameters from constructor
ankitdhall Mar 27, 2019
3c34f60
script to train FMNIST
ankitdhall Mar 27, 2019
2a075dd
change class name for tshirt; have different layer modifications for …
ankitdhall Mar 27, 2019
1589b0c
add train() and eval() calls; cmd line args
ankitdhall Mar 28, 2019
22159b1
working --set_mode test
Mar 28, 2019
cbd82e4
make set_mode as required arg
ankitdhall Mar 28, 2019
b329710
Merge branch 'master' into finetune_setup
ankitdhall Mar 30, 2019
fea1000
add flags to suppress warnings
ankitdhall Mar 31, 2019
baf6a92
add cmd args for image dir
ankitdhall Mar 31, 2019
61e8d51
add more metrics to tensorboard plots
ankitdhall Apr 1, 2019
5df4401
initial commit to decode tensorboard logs to create train vs. val plots
ankitdhall Apr 1, 2019
578fbdc
add augmentation, transforms
ankitdhall Apr 1, 2019
b87f658
add freq to table in summarizer
ankitdhall Apr 2, 2019
a82246c
add resampler
ankitdhall Apr 2, 2019
121a5cd
add more metrics to generate plots
ankitdhall Apr 3, 2019
c6037f9
remove color jitter
ankitdhall Apr 3, 2019
e7ce5dd
change transforms for db.py debug
ankitdhall Apr 3, 2019
3cddf2b
add code to perform multi level classification experiments
ankitdhall Apr 4, 2019
da4624c
add evaluation for multi level classification experiments
ankitdhall Apr 4, 2019
fbc3fe0
add multi level evaluation
ankitdhall Apr 4, 2019
6ead67d
initial commit for loss.py
ankitdhall Apr 4, 2019
4a9703b
convert leaf labels to device
ankitdhall Apr 5, 2019
77ecaf1
add d3 js viz; allow for merged genus+species combination
ankitdhall Apr 5, 2019
b8a499c
wrappers for genus + species merged
ankitdhall Apr 5, 2019
d76c85f
add code to compute multi-level metrics
ankitdhall Apr 6, 2019
124b946
fix labelmaps; add Small and Merged labelmaps and loaders
ankitdhall Apr 6, 2019
c155338
correct dataloader image dir path
ankitdhall Apr 6, 2019
64da589
add more classes to Small database
ankitdhall Apr 6, 2019
e267449
add gradient viz
ankitdhall Apr 6, 2019
623e3ba
comment print statement
ankitdhall Apr 7, 2019
2601918
use original pytorch transforms
ankitdhall Apr 7, 2019
0c729b3
add single_level option for classification
ankitdhall Apr 7, 2019
34ce9de
remove normalization; <- fixes everything
ankitdhall Apr 7, 2019
57ce7d2
add commit hash and branch as args and save to disk
ankitdhall Apr 7, 2019
ed1b7e5
add options to combine and customize plots from tb logs
ankitdhall Apr 8, 2019
72d3bb7
add tensorboard logging for test set
ankitdhall Apr 12, 2019
bb280c8
add per level metrics
ankitdhall Apr 12, 2019
4e98350
rename classes properly
ankitdhall Apr 13, 2019
157611b
add per level metrics for multi label baseline
ankitdhall Apr 13, 2019
eca636f
rename directory that stores stats about best model
ankitdhall Apr 13, 2019
0f320f8
add train, val, test sample counts to .md files
ankitdhall Apr 13, 2019
21ae2b3
add back genus level to merged dataset
ankitdhall Apr 13, 2019
40440ba
create train freq vs score plots
ankitdhall Apr 16, 2019
fde9235
correct arguments; add script to ease profiling
ankitdhall Apr 16, 2019
da2c99d
update requirements after creating lenv virtual env
ankitdhall Apr 16, 2019
50b9823
make code faster; reduce plotting ops; remove grad logging
ankitdhall Apr 16, 2019
253b7ad
change number of epochs; profiling parameter
ankitdhall Apr 17, 2019
f8f1487
correct matplotlib backend to prevent tkinter module import errors
ankitdhall Apr 17, 2019
606e86f
correct parent class constructor call
ankitdhall Apr 17, 2019
a71a718
add cifar10 for profiling
ankitdhall Apr 17, 2019
24cfc24
correct args -> arguments; typo
ankitdhall Apr 17, 2019
b2d9829
make fmnist runnable with new losses
ankitdhall Apr 17, 2019
6b63640
print number of GPUs being used
ankitdhall Apr 17, 2019
824e4f2
try parallelizing fmnist
ankitdhall Apr 17, 2019
8b974d1
make ETHEC model data parallel
ankitdhall Apr 18, 2019
962b475
modify profiling.py
ankitdhall Apr 18, 2019
83c266e
splitting for merged db
ankitdhall Apr 18, 2019
bc9e90f
correct the barplot widths for freq vs performance plot
ankitdhall Apr 23, 2019
e481311
update ETHEC labelmaps; add labelmap generation
ankitdhall Apr 24, 2019
22e70c9
remove print statement for lehanus
ankitdhall Apr 24, 2019
107e9e5
implement re-weighted loss; add as cmd line arguments
ankitdhall Apr 24, 2019
f2638c1
move weights to gpu/cpu; add stats for num of pred per sample
ankitdhall Apr 24, 2019
484564b
correct typos and add test plot
ankitdhall Apr 30, 2019
b193e0e
add inverse sqrt freq weights for resampling
ankitdhall Apr 30, 2019
aefd30f
add option to use Adam as optimizer
ankitdhall May 2, 2019
0a6b221
add options to use resnet101 and resnet152
ankitdhall May 3, 2019
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
database/
exp/
138 changes: 138 additions & 0 deletions data/convert_tblog.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import os
import argparse
import tensorflow as tf
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt


class ConvertLog:
"""
Export tensorboard logs as plots.
"""
def __init__(self, path_to_log, path_to_save, experiment_list, metric_list, combine, val_only, legend_labels, title):
"""
Constructor.
:param path_to_log: <str> Location of the parent experiment directory
:param path_to_save: <str> Parent directory to store the plots to
:param experiment_list: <list <str> > List of experiments to convert
:param metric_list: <list <str> > List of metrics to plot from tensorboard
:param combine: <bool> If combine plots across different experiments
:param val_only: <bool> If used, combines plots across experiments for val metrics only
:param legend_labels: <list <str> > List of labels for the legend (one per experiment)
:param title: <str> Title of the plot
"""
self.path_to_log = path_to_log
self.test_only = val_only
self.metric_list = metric_list
self.combine = combine
self.title = title
self.legend_labels = legend_labels
self.path_to_save = os.path.join(path_to_save, 'plots')
if not os.path.exists(self.path_to_save):
os.makedirs(self.path_to_save)
self.exp_list = experiment_list
if self.exp_list is None:
self.exp_list = os.listdir(self.path_to_log)
print('== Will be converting the following experiments\n {}'.format(self.exp_list))
if self.combine:
print('== Will combine the plots')
self.plot_window = None

def convert_exp(self):
"""
Convert the experiment
:return: -
"""
if self.combine:
self.create_combined_train_val_plot()
else:
for exp in self.exp_list:
tf_log = os.listdir(os.path.join(self.path_to_log, exp, 'tensorboard'))[0]
tf_log = os.path.join(self.path_to_log, exp, 'tensorboard', tf_log)
if not os.path.exists(os.path.join(self.path_to_save, exp)):
os.makedirs(os.path.join(self.path_to_save, exp))
for metric in self.metric_list:
self.create_train_val_plot(metric, tf_log, exp)

def create_combined_train_val_plot(self):
if not os.path.exists(os.path.join(self.path_to_save, 'combined')):
os.makedirs(os.path.join(self.path_to_save, 'combined'))
for metric in self.metric_list:
for exp_id, exp in enumerate(self.exp_list):
tf_log = os.listdir(os.path.join(self.path_to_log, exp, 'tensorboard'))[0]
tf_log = os.path.join(self.path_to_log, exp, 'tensorboard', tf_log)
self.create_train_val_plot(metric, tf_log, exp, self.title,
self.legend_labels[exp_id] if self.legend_labels else None)

save_fig_to = os.path.join(self.path_to_save, 'combined', 'combined_train_val_{}.pdf'.format(metric))
plt.savefig(save_fig_to, format='pdf')
plt.clf()

def create_train_val_plot(self, field, tf_log, exp, title=None, legend_label=None):
"""
Create a plot with train and val.
:param plt: Matplotlib plot
:param field: <str> field to plot for train and val
:param tf_log: <str> path to tf log
:param exp: <str> name of experiment
:param title: <str> plot title
:param legend_label: <str> specify legend name
:return:
"""
train, val, test, epoch = [], [], [], []
for e in tf.train.summary_iterator(tf_log):
for v in e.summary.value:
if v.tag == 'train_{}'.format(field):
train.append(v.simple_value)
epoch.append(e.step)
if v.tag == 'val_{}'.format(field):
val.append(v.simple_value)
if v.tag == 'test_{}'.format(field):
test.append(v.simple_value)

# save as plot
if not self.test_only:
plt.plot(epoch, train, '-', label='train {} {}'.format(field, legend_label if legend_label else ''))
plt.plot(epoch, val, '-', label='val {} {}'.format(field, legend_label if legend_label else ''))
plt.plot(epoch, test, '-', label='test {} {}'.format(field, legend_label if legend_label else ''))
plt.xlabel('Epoch')
plt.legend(loc='best')
if title:
plt.title(title)
else:
plt.title('train {0}, val {0} and test {0}'.format(field))

if not self.combine:
save_fig_to = os.path.join(self.path_to_save, exp, '{}_train_val_{}.pdf'.format(exp, field))

plt.savefig(save_fig_to, format='pdf')
plt.clf()


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--path_to_logdir", help='Parent directory to experiment directory.', type=str,
default='/home/ankit/learning_embeddings/exp/multi_level_logs')
parser.add_argument("--path_to_save", help='Parent directory to store plots.', type=str,
default='../')
parser.add_argument("--experiment_list", help='Experiments to parse logs for.', nargs='*', default=None)
parser.add_argument("--combine", help='If used, combines plots across experiments', action='store_true')
parser.add_argument("--test_only", help='If used, combines plots across experiments for test metrics only', action='store_true')
parser.add_argument("--legend_labels", help='List of labels for the legend', nargs='*', default=None)
parser.add_argument("--title", help='List of labels for the legend', type=str, default=None)
parser.add_argument("--metric_list", help='Metrics to plot.', nargs='*', default=['macro_f1', 'micro_f1', 'loss',
'micro_precision', 'micro_recall',
'macro_precision', 'macro_recall'])
args = parser.parse_args()

exp_list = ['ethec_full_resnet50_lr_0.01', 'ethec_single_thresh_full_resnet50_lr_0.01']
clog = ConvertLog(path_to_log=args.path_to_logdir,
path_to_save=args.path_to_save,
experiment_list=args.experiment_list,
metric_list=args.metric_list,
combine=args.combine,
val_only=args.test_only,
legend_labels=args.legend_labels,
title=args.title)
clog.convert_exp()
Loading