Adaptive P/ODE numerics with Grassmann.jl element TensorField assembly
This project originally started as a FORTRAN 95 project called adapode and evolved with Grassmann.jl and Cartan.jl.
using Grassmann, Adapode, Makie
x0 = Chain(10.0,10.0,10.0)
Lorenz(σ,r,b) = x -> Chain(
σ*(x[2]-x[1]),
x[1]*(r-x[3])-x[2],
x[1]*x[2]-b*x[3])
lines(odesolve(Lorenz(10.0,28.0,8/3),x0))
Supported ODE solvers include: explicit Euler, Heun's method (improved Euler), Midpoint 2nd order RK, Kutta's 3rd order RK, classical 4th order Runge-Kuta, adaptive Heun-Euler, adaptive Bogacki-Shampine RK23, adaptive Fehlberg RK45, adaptive Cash-Karp RK45, adaptive Dormand-Prince RK45, multistep Adams-Bashforth-Moulton 2nd,3rd,4th,5th order, adaptive multistep ABM 2nd,3rd,4th,5th order.
It is possible to work with L2 projection on a mesh with
L2Projector(t,f;args...) = mesh(t,color=\(assemblemassload(t,f)...);args...)
L2Projector(initmesh(0:1/5:1)[3],x->x[2]*sin(x[2]))
L2Projector(initmesh(0:1/5:1)[3],x->2x[2]*sin(2π*x[2])+3)
Partial differential equations can also be assembled with various additional methods:
function solvepoisson(t,e,c,f,κ,gD=0,gN=0)
m = volumes(t)
b = assembleload(t,f,m)
A = assemblestiffness(t,c,m)
R,r = assemblerobin(e,κ,gD,gN)
return TensorField(t,(A+R)\(b+r))
end
function solvetransportdiffusion(tf,eκ,c,δ,gD=0,gN=0)
t,f,e,κ = base(tf),fiber(tf),base(eκ),fiber(eκ)
m = volumes(t)
g = gradienthat(t,m)
A = assemblestiffness(t,c,m,g)
b = means(immersion(t),f)
C = assembleconvection(t,b,m,g)
Sd = assembleSD(t,sqrt(δ)*b,m,g)
R,r = assemblerobin(e,κ,gD,gN)
return TensorField(t,(A+R-C'+Sd)\r)
end
function solvetransport(t,e,c,f=1,ϵ=0.1)
m = volumes(t)
g = gradienthat(t,m)
A = assemblestiffness(t,ϵ,m,g)
b = assembleload(t,f,m)
C = assembleconvection(t,c,m,g)
return TensorField(t,solvedirichlet(A+C,b,e))
end
Such modular methods can work with a TensorField
of any dimension.
function solveheat(ic,f,κ,T)
m,h = length(T),step(T)
out = zeros(length(ic),m)
out[:,1] = fiber(ic) # initial condition
A = assemblestiffness(base(ic)) # assemble(p(t),1,f)
M,b = assemblemassload(f).+assemblerobin(κ)
LHS = M+h*A # time step
for l ∈ 1:m-1
out[:,l+1] = LHS\(M*out[:,l]+h*b); #l%10==0 && println(l*h)
end
TensorField(base(ic)⊕T,out)
end
pt,pe = initmesh(0:0.01:1)
triangle(x) = 0.5-abs(0.5-x[2])
bt = solveheat(triangle.(pt),(x->2x[2]).(pt),(x->1e6).(pe),range(0,0.6,101))
function adaptpoisson(g,pt,pe,c=1,a=0,f=1,κ=1e6,gD=0,gN=0)
ϵ = 1.0
while ϵ > 5e-5 && elements(pt) < 10000
m = volumes(pt)
h = gradienthat(pt,m)
A,M,b = assemble(pt,c,a,f,m,h)
ξ = solvedirichlet(A+M,b,immersion(pe))
η = jumps(pt,c,a,f,ξ,m,h)
ϵ = rms(η)
println("ϵ=$ϵ, α=$(ϵ/maximum(η))")
refinemesh!(g,pt,pe,select(η,ϵ),"regular")
end
return g,pt,pe
end
adaptpoisson(refinemesh(0:0.25:1)...,1,0,x->exp(-100abs2(x[2]-0.5)))
using Grassmann, Cartan, Adapode, KrylovKit
pt,pe = initmesh(...)
A,M = assemble(pt,1,1,0)
La,Xi = geneigsolve((A,M),5,:SR)
Ξ = TensorField.(Ref(pt),Xi)
More general problems for finite element boundary value problems are also enabled by mesh representations imported from external sources and managed by Cartan
via Grassmann
algebra.
These methods can automatically generalize to higher dimensional manifolds and are compatible with discrete differential geometry.