Skip to content

cleanlab/cleanlab-codex

Repository files navigation

Cleanlab Codex - Closing the AI Knowledge Gap

Build Status PyPI - Version PyPI - Python Version Docs

Codex enables you to seamlessly leverage knowledge from Subject Matter Experts (SMEs) to improve your RAG/Agentic applications.

The cleanlab-codex library provides a simple interface to integrate Codex's capabilities into your RAG application. See immediate impact with just a few lines of code!

Demo

Install the package:

pip install cleanlab-codex

Integrating Codex into your RAG application is as simple as:

from cleanlab_codex import Validator
validator = Validator(codex_access_key=...) # optional configurations can improve accuracy/latency

# Your existing RAG code:
context = rag_retrieve_context(user_query)
prompt = rag_form_prompt(user_query, retrieved_context)
response = rag_generate_response(prompt)

# Detect bad responses and remediate with Cleanlab
results = validator.validate(query=query, context=context, response=response,
    form_prompt=rag_form_prompt)

final_response = (
    results["expert_answer"] # Codex's answer
    if results["is_bad_response"] and results["expert_answer"]
    else response # Your RAG system's initial response
)

Why Codex?

  • Detect Knowledge Gaps and Hallucinations: Codex identifies knowledge gaps and incorrect/untrustworthy responses in your AI application, to help you know which questions require expert input.
  • Save SME time: Codex ensures that SMEs see the most critical knowledge gaps first.
  • Easy Integration: Integrate Codex into any RAG/Agentic application with just a few lines of code.
  • Immediate Impact: SME answers instantly improve your AI, without any additional Engineering/technical work.

Documentation

Comprehensive documentation along with tutorials and examples can be found here.

License

cleanlab-codex is distributed under the terms of the MIT license.

About

Python client library to integrate Cleanlab Codex into RAG applications

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 11

Languages